

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Example programs

After running source install.sh, the executable versions of the example
programs are located in bazel-bin/nucleus/examples/. For example, to run
ascii_pileup, you would actually run a command like

bazel-bin/nucleus/examples/ascii_pileup input.sam chr3:99393

If you would like to rebuild just the example programs – after modifying
one of them, perhaps – this can be done with

bazel build -c opt $BAZEL_FLAGS nucleus/examples:all

Here is a summary of the example
programs [https://github.com/google/nucleus/blob/master/nucleus/examples]
included with Nucleus:

	add_ad_to_vcf input.vcf output.vcf

If input.vcf is a VCF file in which the variant calls have allele depths
(in their ‘AD’ FORMAT fields), then output.vcf will be the same but with
the allele depths summed into the ‘AD’ INFO field of the variants. This
program is a good example of writing out a file with a modified header, as
well as demonstrating the variant_utils and variantcall_utils routines
for setting and getting INFO and FORMAT information.

	ascii_pileup input.sam chrX:3029

This will print the reads from input.sam that overlap with the given
location. The location is highlighted in each read and the reads are sorted
and visually aligned by location, so the end result is surprisingly pretty,
particularly if you have a wide monitor. Demonstrates the SAM reader and
using range queries.

	count_variants input.vcf

Prints the number of variants in input.vcf, broken down by type
(ref/SNP/indel) and by chromosome. If you want to just read in a VCF file
and print out some information about it, this is a good one to copy.

	filter_vcf input.vcf output.vcf

output.vcf will contain all of the variants in input.vcf that have a
quality score greater than 3.01. This is the example program used in the
overview.

	dna_sequencing_error_correction.ipynb

This tutorial shows how Nucleus can be used alongside TensorFlow to apply
machine learning to problems in genomics. It can be run on Colaboratory, a
free hosted Jupyter notebook environment.

The context for this tutorial is that there are errors in the next
generation sequencing reads, and we can formulate the error correction as
a pattern recogition problem which then can be solved using deep learning.

In this example, you can see how different readers and writers of Nucleus
are used together to parse genomics data from 3 different formats (VCF,
Fasta and BAM), and then to construct features and labels to be fed into
Tensorflow’s tf.layers and tf.Estimators APIs.

This is the longest example, but it really displays the power of Nucleus in
taking genomics data and turning it into machine learning inputs.

The accompanying blog post can be found here [https://google.github.io/deepvariant/posts/2019-01-31-using-nucleus-and-tensorflow-for-dna-sequencing-error-correction/].

	validate_vcf ref.fasta input.vcf

This will print a warning if the input FASTA reference file and the input
VCF file are mismatched, which can happen if a) they mention a different set
of contigs, b) the VCF files contains variants not covered by the reference,
c) the VCF file contains a variant covered by the reference, but the VCF and
FASTA file disagree about the correct reference bases for the range. This
program shows how to use the IndexedFastaReader, and to query it using
ranges taken from a VCF file.

Overview

Here is an example Nucleus program:

from nucleus.io import vcf

with vcf.VcfReader('/tmp/example.vcf.gz') as reader:
 print('Sample names in VCF: ', ' '.join(reader.header.sample_names))
 with vcf.VcfWriter('/tmp/filtered.tfrecord', header=reader.header) as writer:
 for variant in reader:
 if variant.quality > 3.01:
 writer.write(variant)

Let’s go through it line by line.

from nucleus.io import vcf

nucleus/io is the directory containing Nucleus’s Python classes for
doing reading and writing. There are modules for each of the genomics
formats that Nucleus supports, including FASTA, FASTQ, SAM/BAM and VCF.
That directory also contains the base classes that define the APIs for all
of the various readers and writers. In brief, each reader can either be
iterated over or queried by a region, and every writer has just the single
method write.

with vcf.VcfReader('/tmp/example.vcf.gz') as reader:

We use Python’s with pattern because the reader object returned by
vcf.VcfReader is smart enough to close the file at the end of the block
when we do. vcf.VcfReader is also smart enough to realize that this
particular input file is compressed, and deal with that transparently.
Of course, vcf files don’t have to be compressed; VcfReader would have
accepted an uncompressed /tmp/example2.vcf just as well.

In order to use the range query functionality of VCF, we assume that BGZIP’d VCF
files come along with a TABIX [http://www.htslib.org/doc/tabix.html] index that
allows us to efficiently do random access queries on genomic ranges. For
/tmp/example.vcf.gz we would assume the index is in the file
/tmp/example.vcf.gz.tbi. The query method will raise an exception if there
is no index file present (or if the file is text VCF, which is not indexable).

 print('Sample names in VCF: ', ' '.join(reader.header.sample_names))

This does what you would expect; it prints the names of all the samples
present in the input VCF file. Every Nucleus reader object contains a
.header field with information about the file’s header and metadata.
(For some file types, like reference FASTA files, the header information
also comes from the file’s index’s header.)

The names of the subfields of the .header of a VCF file can be found in
the definition of the protocol buffer message VcfHeader in
variants.proto [https://github.com/google/nucleus/blob/master/nucleus/protos/variants.proto].
Using protocol buffers is mostly intuitive – you can treat messages as
named tuples, repeated fields as lists, map fields as dictionaries, etc. –
and for more information you can refer to the protocol buffer
documentation [https://developers.google.com/protocol-buffers/docs/pythontutorial].

 with vcf.VcfWriter('/tmp/filtered.tfrecord', header=reader.header) as writer:

You might be surprised by the file name here. vcf.VcfWriter can certainly
write to VCF files, and if called with say vcf.VcfWriter('/tmp/out.vcf')
or vcf.VcfWriter('/tmp/out.vcf.gz') it would do just that.

But Nucleus reader and writers can also read and write from the
TFRecords [https://www.tensorflow.org/api_guides/python/python_io] file
format used by TensorFlow [https://www.tensorflow.org]. As the above
example suggests, the desired file format is indicated by the file extensions:
‘.tfrecord’ (or ‘.tfrecord.gz’) means TFRecords, while ‘.vcf’ means VCF.

It has been our experience that this ability to easily switch between native
genomics files and TFRecords files makes it easier to gradually introduce
machine learning into genomics workflows. We hope you find it convenient as
well!

 for variant in reader:

As mentioned above, every Nucleus reader supports iteration. You can do it
this way, directly using the reader object, or if you need a Python iterable
to pass to another routine, you can get one from calling reader.iterate().

Each variant in this loop will be a Variant protocol buffer object,
defined in
variants.proto [https://github.com/google/nucleus/blob/master/nucleus/protos/variants.proto].
Most of the Variant fields are easy to work with: variant.reference_name
is the CHROM field, variant.start is the starting position, etc. But the
variant.info and variant_call.info map fields are a little bit trickier
because they contain typed information, and those types depend on the header
definitions. To make things easier, Nucleus defines some convenience routines
for setting and getting these fields in
util/variant_utils.py [https://github.com/google/nucleus/blob/master/nucleus/util/variant_utils.py]
and
util/variantcall_utils.py [https://github.com/google/nucleus/blob/master/nucleus/util/variantcall_utils.py].

 if variant.quality > 3.01:
 writer.write(variant)

These lines should now be easy to understand – we test the quality field
of the Variant, and if it is high enough, we write it to the output.
Unsurprisingly, the write method of Nucleus writers takes a protocol buffer
of the appropriate type as input.

(If you are wondering where the 3.01 came from, quality is measured on a
Phred-scale, quality = -10 * log_10(probability), and
-10 * log_10(0.5) is approximately 3.01.)

Here’s a table to summarize the file types currently supported by Nucleus,
and their associated protocol buffer types:

Format | Record Type | Header Type | Reader? | Writer?
——— | ————– | ————– | ——- | ——-
BedGraph | BedGraphRecord | none | Y | Y
BED | BedRecord | BedHeader | Y | Y
FASTA Ref | string | RefFastaHeader | Y | N
FastQ | FastqRecord | none | Y | Y
GFF | GffRecord | GffHeader | Y | Y
SAM/BAM | Read | SamHeader | Y | Y
TFRecord | Any | Any | Y | Y
VCF | Variant | VcfHeader | Y | Y

Don’t despair if your favorite genomics format isn’t listed, though, as we
hope to add more soon. (And
contributions [https://github.com/google/nucleus/blob/master/CONTRIBUTING]
are welcomed!)

Documentation Index

nucleus.examples

nucleus.examples.add_ad_to_vcf

nucleus.examples.apply_genotyping_prior

nucleus.examples.ascii_pileup

nucleus.examples.count_variants

nucleus.examples.filter_vcf

nucleus.examples.print_tfrecord

nucleus.examples.validate_vcf

nucleus.io

nucleus.io.bed

nucleus.io.bedgraph

nucleus.io.clif_postproc

nucleus.io.converter

nucleus.io.fasta

nucleus.io.fastq

nucleus.io.genomics_reader

nucleus.io.genomics_writer

nucleus.io.gff

nucleus.io.gfile

nucleus.io.sam

nucleus.io.sharded_file_utils

nucleus.io.tabix

nucleus.io.tfrecord

nucleus.io.vcf

nucleus.pip_package

nucleus.pip_package.setup

nucleus.testing

nucleus.testing.test_utils

nucleus.util

nucleus.util.cigar

nucleus.util.errors

nucleus.util.genomics_math

nucleus.util.proto_utils

nucleus.util.ranges

nucleus.util.sequence_utils

nucleus.util.struct_utils

nucleus.util.utils

nucleus.util.variant_utils

nucleus.util.variantcall_utils

nucleus.util.vcf_constants

nucleus.util.vis

nucleus.examples.add_ad_to_vcf – This example program adds the AD info field to a VCF file.

Source code: nucleus/examples/add_ad_to_vcf.py [https://github.com/google/nucleus/tree/master/nucleus/examples/add_ad_to_vcf.py]

Documentation index: doc_index.md

It assumes that the AD field of the individual variant calls is already
populated.

Sample usage:
$ add_ad_to_vcf input.vcf.gz output.vcf.gz

Functions overview

Name | Description
—–|————
get_variant_ad(variant) | Returns the allele depth for the Variant, calculated across its calls.
main(argv) |

Functions

[bookmark: get_variant_ad]

get_variant_ad(variant)

Returns the allele depth for the Variant, calculated across its calls.

[bookmark: main]

main(argv)

nucleus.examples.apply_genotyping_prior – Given new genotype priors, update the variant calls in a VCF or gVCF file.

Source code: nucleus/examples/apply_genotyping_prior.py [https://github.com/google/nucleus/tree/master/nucleus/examples/apply_genotyping_prior.py]

Documentation index: doc_index.md

Functions overview

Name | Description
—–|————
main(argv) |
recall_variant(log_priors, variant) | Update the genotype calls in variant given the new genotype priors.

Functions

[bookmark: main]

main(argv)

[bookmark: recall_variant]

recall_variant(log_priors, variant)

Update the genotype calls in variant given the new genotype priors.

nucleus.examples.ascii_pileup – Print an ASCII art pileup image.

Source code: nucleus/examples/ascii_pileup.py [https://github.com/google/nucleus/tree/master/nucleus/examples/ascii_pileup.py]

Documentation index: doc_index.md

Functions overview

Name | Description
—–|————
ascii_pileup(sam_filename, query) | Returns an ASCII pileup image for the query as a list of strings.
main(argv) |
read_str(left_pos, start, highlight_position, seq) | Returns an aligned and highlighted ASCII representation of sequence.

Functions

[bookmark: ascii_pileup]

ascii_pileup(sam_filename, query)

Returns an ASCII pileup image for the query as a list of strings.

Args:
 sam_filename: The filename of the BAM/SAM file.
 query: String version of range.

[bookmark: main]

main(argv)

[bookmark: read_str]

read_str(left_pos, start, highlight_position, seq)

Returns an aligned and highlighted ASCII representation of sequence.

nucleus.examples.count_variants – Counts variants in a VCF, both by type and per chromosome.

Source code: nucleus/examples/count_variants.py [https://github.com/google/nucleus/tree/master/nucleus/examples/count_variants.py]

Documentation index: doc_index.md

Functions overview

Name | Description
—–|————
main(argv) |

Functions

[bookmark: main]

main(argv)

nucleus.examples.filter_vcf – Writes all the variants in a VCF file with a quality greater than 3.01.

Source code: nucleus/examples/filter_vcf.py [https://github.com/google/nucleus/tree/master/nucleus/examples/filter_vcf.py]

Documentation index: doc_index.md

Functions overview

Name | Description
—–|————
main(argv) |

Functions

[bookmark: main]

main(argv)

nucleus.examples.print_tfrecord – Prints a TFRecord file created by Nucleus.

Source code: nucleus/examples/print_tfrecord.py [https://github.com/google/nucleus/tree/master/nucleus/examples/print_tfrecord.py]

Documentation index: doc_index.md

Usage:
print_tfrecord <proto_name>

 nucleus.examples.validate_vcf – Validates that a VCF file and a FASTA reference file correspond.

nucleus.examples.validate_vcf – Validates that a VCF file and a FASTA reference file correspond.

Source code: nucleus/examples/validate_vcf.py [https://github.com/google/nucleus/tree/master/nucleus/examples/validate_vcf.py]

Documentation index: doc_index.md

They correspond if:
a) they cover the same contigs,
b) the reference covers every variant in the vcf file, and
c) they agree on the reference bases covered by the variants.

Functions overview

Name | Description
—–|————
main(argv) |
validate_contigs(ref_contigs, vcf_contigs) | Validate that the two lists of ContigInfos have the same set of names.
validate_variant(ref_reader, variant) | Validate that variant is covered by the reference and agrees with it.

Functions

[bookmark: main]

main(argv)

[bookmark: validate_contigs]

validate_contigs(ref_contigs, vcf_contigs)

Validate that the two lists of ContigInfos have the same set of names.

[bookmark: validate_variant]

validate_variant(ref_reader, variant)

Validate that variant is covered by the reference and agrees with it.

 nucleus.io.bed – Classes for reading and writing BED files.

nucleus.io.bed – Classes for reading and writing BED files.

Source code: nucleus/io/bed.py [https://github.com/google/nucleus/tree/master/nucleus/io/bed.py]

Documentation index: doc_index.md

The BED format is described at
https://genome.ucsc.edu/FAQ/FAQformat.html#format1

API for reading:

from nucleus.io import bed

Iterate through all records.
with bed.BedReader(input_path) as reader:
 for record in reader:
 print(record)

where record is a nucleus.genomics.v1.BedRecord protocol buffer.

API for writing:

from nucleus.io import bed
from nucleus.protos import bed_pb2

records is an iterable of nucleus.genomics.v1.BedRecord protocol buffers.
records = ...

header defines how many fields to write out.
header = bed_pb2.BedHeader(num_fields=5)

Write all records to the desired output path.
with bed.BedWriter(output_path, header) as writer:
 for record in records:
 writer.write(record)

For both reading and writing, if the path provided to the constructor contains
‘.tfrecord’ as an extension, a TFRecord file is assumed and attempted to be
read or written. Otherwise, the filename is treated as a true BED file.

Files that end in a ‘.gz’ suffix cause the file to be treated as compressed
(with BGZF if it is a true BED file, and with gzip if it is a TFRecord file).

Classes overview

Name | Description
—–|————
BedReader | Class for reading BedRecord protos from BED or TFRecord files.
BedWriter | Class for writing BedRecord protos to BED or TFRecord files.
NativeBedReader | Class for reading from native BED files.
NativeBedWriter | Class for writing to native BED files.

Classes

BedReader

Class for reading BedRecord protos from BED or TFRecord files.

BedWriter

Class for writing BedRecord protos to BED or TFRecord files.

NativeBedReader

Class for reading from native BED files.

Most users will want to use BedReader instead, because it dynamically
dispatches between reading native BED files and TFRecord files based on the
filename's extension.

Methods:

[bookmark: __init__]

__init__(self, input_path, num_fields=0)

Initializes a NativeBedReader.

Args:
 input_path: string. A path to a resource containing BED records.
 num_fields: int. The number of fields to read in the BED. If unset or set
 to zero, all fields in the input are read.

[bookmark: iterate]

iterate(self)

Returns an iterable of BedRecord protos in the file.

[bookmark: query]

query(self)

Returns an iterator for going through the records in the region.

NOTE: This function is not currently implemented by NativeBedReader though
it could be implemented for sorted, tabix-indexed BED files.

NativeBedWriter

Class for writing to native BED files.

Most users will want BedWriter, which will write to either native BED
files or TFRecord files, based on the output filename's extension.

Methods:

[bookmark: __init__]

__init__(self, output_path, header=None)

Initializer for NativeBedWriter.

Args:
 output_path: str. The path to which to write the BED file.
 header: nucleus.genomics.v1.BedHeader. The header that defines all
 information germane to the constituent BED records.

[bookmark: write]

write(self, proto)

 nucleus.io.bedgraph – Classes for reading and writing BedGraph files.

nucleus.io.bedgraph – Classes for reading and writing BedGraph files.

Source code: nucleus/io/bedgraph.py [https://github.com/google/nucleus/tree/master/nucleus/io/bedgraph.py]

Documentation index: doc_index.md

The BedGraph format is described at
https://genome.ucsc.edu/goldenpath/help/bedgraph.html

API for reading:

from nucleus.io import bedgraph

Iterate through all records.
with bed.BedGraphReader(input_path) as reader:
 for record in reader:
 print(record)

where record is a nucleus.genomics.v1.BedGraphRecord protocol buffer.

API for writing:

from nucleus.io import bedgraph
from nucleus.protos import bedgraph_pb2

records is an iterable of nucleus.genomics.v1.BedGraphRecord protocol buffers.
records = ...

Write all records to the desired output path.
with bed.BedGraphWriter(output_path) as writer:
 for record in records:
 writer.write(record)

For both reading and writing, if the path provided to the constructor contains
‘.tfrecord’ as an extension, a TFRecord file is assumed and attempted to be
read or written. Otherwise, the filename is treated as a true BedGraph file.

Files that end in a ‘.gz’ suffix cause the file to be treated as compressed
(with BGZF if it is a BedGraph file, and with gzip if it is a TFRecord file).

Classes overview

Name | Description
—–|————
BedGraphReader | Class for reading BedGraphRecord protos from BedGraph or TFRecord files.
BedGraphWriter | Class for writing BedGraphRecord protos to BedGraph or TFRecord files.
NativeBedGraphReader | Class for reading from native BedGraph files.
NativeBedGraphWriter | Class for writing to native BedGraph files.

Classes

BedGraphReader

Class for reading BedGraphRecord protos from BedGraph or TFRecord files.

BedGraphWriter

Class for writing BedGraphRecord protos to BedGraph or TFRecord files.

NativeBedGraphReader

Class for reading from native BedGraph files.

Most users will want to use BedGraphReader instead, because it dynamically
dispatches between reading native BedGraph files and TFRecord files based on
the filename's extension.

Methods:

[bookmark: __init__]

__init__(self, input_path, num_fields=0)

Initializes a NativeBedGraphReader.

Args:
 input_path: string. A path to a resource containing BedGraph records.
 num_fields: int. The number of fields to read in the BedGraph. If unset or
 set to zero, all fields in the input are read.

[bookmark: iterate]

iterate(self)

Returns an iterable of BedGraphRecord protos in the file.

[bookmark: query]

query(self)

Returns an iterator for going through the records in the region.

NOTE: This function is not currently implemented by NativeBedGraphReader
though it could be implemented for sorted, tabix-indexed BedGraph files.

NativeBedGraphWriter

Class for writing to native BedGraph files.

Most users will want BedGraphWriter, which will write to either native
BedGraph files or TFRecord files, based on the output filename's extension.

Methods:

[bookmark: __init__]

__init__(self, output_path, header=None)

Initializer for NativeBedGraphWriter.

Args:
 output_path: str. The path to which to write the BedGraph file.

[bookmark: write]

write(self, proto)

 nucleus.io.clif_postproc – CLIF postprocessors.

nucleus.io.clif_postproc – CLIF postprocessors.

Source code: nucleus/io/clif_postproc.py [https://github.com/google/nucleus/tree/master/nucleus/io/clif_postproc.py]

Documentation index: doc_index.md

Classes overview

Name | Description
—–|————
WrappedBedGraphIterable |
WrappedBedIterable |
WrappedCppIterable | This class gives Python iteration semantics on top of a C++ ‘Iterable’.
WrappedFastqIterable |
WrappedGffIterable |
WrappedReferenceIterable |
WrappedSamIterable |
WrappedVariantIterable |

Functions overview

Name | Description
—–|————
ValueErrorOnFalse(ok, *args) | Returns None / arg / (args,…) if ok.

Classes

WrappedBedGraphIterable

WrappedBedIterable

WrappedCppIterable

This class gives Python iteration semantics on top of a C++ 'Iterable'.

Methods:

[bookmark: __init__]

__init__(self, cc_iterable)

WrappedFastqIterable

WrappedGffIterable

WrappedReferenceIterable

WrappedSamIterable

WrappedVariantIterable

Functions

[bookmark: ValueErrorOnFalse]

ValueErrorOnFalse(ok, *args)

Returns None / arg / (args,...) if ok.

 nucleus.io.converter – A universal converter program for nucleus-supported genomics file formats.

nucleus.io.converter – A universal converter program for nucleus-supported genomics file formats.

Source code: nucleus/io/converter.py [https://github.com/google/nucleus/tree/master/nucleus/io/converter.py]

Documentation index: doc_index.md

Invoked with a single argument, this program will open a genomics data file and
iterate over its contents, doing no writing. This is a good benchmark for I/O
and reader processing speed.

Invoked with two arguments, the program will open the first file, read its
records, and write them, one at a time, to the second file. The filetypes for
the first and second filename must be compatible ways of encoding the same
nucleus genomics record type (for example, infile.gff and
outfile.gff.tfrecord.gz are compatible, but infile.gff and outfile.bam are
not.

Note: at present we have no convention for encoding a file header in
tfrecords, so conversion is not possible from tfrecord to any native file format
for which a header is compulsory.

Classes overview

Name | Description
—–|————
ConversionError | An exception used to signal file conversion error.
NullWriter | A writer class whose .write() method is a no-op.

Functions overview

Name | Description
—–|————
convert(in_filename, out_filename) | Converts a recognized genomics file in_filename to out_filename.
main(argv) |

Classes

ConversionError

An exception used to signal file conversion error.

NullWriter

A writer class whose .write() method is a no-op.

This allows us to create and use a writer object where one is required by
context but we do not wish to write to any file.

Methods:

[bookmark: __init__]

__init__(self, unused_filename, header=None)

[bookmark: write]

write(self, unused_record)

Functions

[bookmark: convert]

convert(in_filename, out_filename)

Converts a recognized genomics file `in_filename` to `out_filename`.

Args:
 in_filename: str; filename of a genomics data file to use as input.
 out_filename: str; filename of a genomics data file to use as output, or
 None, if no output should be written.

Raises:
 ConversionError, if the conversion could not be executed.

[bookmark: main]

main(argv)

 nucleus.io.fasta – Classes for reading FASTA files.

nucleus.io.fasta – Classes for reading FASTA files.

Source code: nucleus/io/fasta.py [https://github.com/google/nucleus/tree/master/nucleus/io/fasta.py]

Documentation index: doc_index.md

The FASTA format is described at
https://en.wikipedia.org/wiki/FASTA_format

API for reading:

from nucleus.io import fasta
from nucleus.protos import range_pb2

with fasta.IndexedFastaReader(input_path) as reader:
 region = range_pb2.Range(reference_name='chrM', start=1, end=6)
 basepair_string = reader.query(region)
 print(basepair_string)

If input_path ends with ‘.gz’, it is assumed to be compressed. All FASTA
files are assumed to be indexed with the index file located at
input_path + '.fai'.

Classes overview

Name | Description
—–|————
FastaReader | Class for reading (name, bases) tuples from FASTA files.
InMemoryFastaReader | An IndexedFastaReader getting its bases from an in-memory data structure.
IndexedFastaReader | Class for reading from FASTA files containing a reference genome.
UnindexedFastaReader | Class for reading from unindexed FASTA files.

Classes

FastaReader

Class for reading (name, bases) tuples from FASTA files.

InMemoryFastaReader

An `IndexedFastaReader` getting its bases from an in-memory data structure.

An `InMemoryFastaReader` provides the same API as `IndexedFastaReader` but
doesn't fetch its data from an on-disk FASTA file but rather fetches the bases
from an in-memory cache containing (chromosome, start, bases) tuples.

In particular, the `query(Range(chrom, start, end))` operation fetches bases
from the tuple where `chrom` == chromosome, and then from the bases where the
first base of bases starts at start. If start > 0, then the bases string is
assumed to contain bases starting from that position in the region. For
example, the record ('1', 10, 'ACGT') implies that
`query(ranges.make_range('1', 11, 12))` will return the base 'C', as the 'A'
base is at position 10. This makes it straightforward to cache a small region
of a full chromosome without having to store the entire chromosome sequence in
memory (potentially big!).

Methods:

[bookmark: __init__]

__init__(self, chromosomes)

Initializes an InMemoryFastaReader using data from chromosomes.

Args:
 chromosomes: list[tuple]. The chromosomes we are caching in memory as a
 list of tuples. Each tuple must be exactly three elements in length,
 containing (chromosome name [str], start [int], bases [str]).

Raises:
 ValueError: If any of the chromosomes tuples are invalid.

[bookmark: c_reader]

c_reader(self)

Returns the underlying C++ reader.

[bookmark: contig]

contig(self, contig_name)

Returns a ContigInfo proto for contig_name.

[bookmark: is_valid]

is_valid(self, region)

Returns whether the region is contained in this FASTA file.

[bookmark: iterate]

iterate(self)

Returns an iterable of (name, bases) tuples contained in this file.

[bookmark: query]

query(self, region)

Returns the base pairs (as a string) in the given region.

IndexedFastaReader

Class for reading from FASTA files containing a reference genome.

Methods:

[bookmark: __init__]

__init__(self, input_path, keep_true_case=False, cache_size=None)

Initializes an IndexedFastaReader.

Args:
 input_path: string. A path to a resource containing FASTA records.
 keep_true_case: bool. If False, casts all bases to uppercase before
 returning them.
 cache_size: integer. Number of bases to cache from previous queries.
 Defaults to 64K. The cache can be disabled using cache_size=0.

[bookmark: c_reader]

c_reader(self)

Returns the underlying C++ reader.

[bookmark: contig]

contig(self, contig_name)

Returns a ContigInfo proto for contig_name.

[bookmark: is_valid]

is_valid(self, region)

Returns whether the region is contained in this FASTA file.

[bookmark: iterate]

iterate(self)

Returns an iterable of (name, bases) tuples contained in this file.

[bookmark: query]

query(self, region)

Returns the base pairs (as a string) in the given region.

UnindexedFastaReader

Class for reading from unindexed FASTA files.

Methods:

[bookmark: __init__]

__init__(self, input_path)

Initializes an UnindexedFastaReader.

Args:
 input_path: string. A path to a resource containing FASTA records.

[bookmark: c_reader]

c_reader(self)

Returns the underlying C++ reader.

[bookmark: contig]

contig(self, contig_name)

Returns a ContigInfo proto for contig_name.

[bookmark: is_valid]

is_valid(self, region)

Returns whether the region is contained in this FASTA file.

[bookmark: iterate]

iterate(self)

Returns an iterable of (name, bases) tuples contained in this file.

[bookmark: query]

query(self, region)

Returns the base pairs (as a string) in the given region.

 nucleus.io.fastq – Classes for reading and writing FASTQ files.

nucleus.io.fastq – Classes for reading and writing FASTQ files.

Source code: nucleus/io/fastq.py [https://github.com/google/nucleus/tree/master/nucleus/io/fastq.py]

Documentation index: doc_index.md

The FASTQ format is described at
https://en.wikipedia.org/wiki/FASTQ_format

API for reading:

from nucleus.io import fastq

with fastq.FastqReader(input_path) as reader:
 for record in reader:
 print(record)

where record is a nucleus.genomics.v1.FastqRecord protocol buffer.

API for writing:

from nucleus.io import fastq

records is an iterable of nucleus.genomics.v1.FastqRecord protocol buffers.
records = ...

with fastq.FastqWriter(output_path) as writer:
 for record in records:
 writer.write(record)

For both reading and writing, if the path provided to the constructor contains
‘.tfrecord’ as an extension, a TFRecord file is assumed and attempted to be
read or written. Otherwise, the filename is treated as a true FASTQ file.

Files that end in a ‘.gz’ suffix cause the file to be treated as compressed
(with BGZF if it is a true FASTQ file, and with gzip if it is a TFRecord file).

Classes overview

Name | Description
—–|————
FastqReader | Class for reading FastqRecord protos from FASTQ or TFRecord files.
FastqWriter | Class for writing FastqRecord protos to FASTQ or TFRecord files.
NativeFastqReader | Class for reading from native FASTQ files.
NativeFastqWriter | Class for writing to native FASTQ files.

Classes

FastqReader

Class for reading FastqRecord protos from FASTQ or TFRecord files.

FastqWriter

Class for writing FastqRecord protos to FASTQ or TFRecord files.

NativeFastqReader

Class for reading from native FASTQ files.

Most users will want to use FastqReader instead, because it dynamically
dispatches between reading native FASTQ files and TFRecord files based on the
filename's extension.

Methods:

[bookmark: __init__]

__init__(self, input_path)

Initializes a NativeFastqReader.

Args:
 input_path: str. A path to a resource containing FASTQ records.

[bookmark: iterate]

iterate(self)

Returns an iterable of FastqRecord protos in the file.

[bookmark: query]

query(self, region)

Returns an iterator for going through the records in the region.

NOTE: This function is not implemented by NativeFastqReader as there is no
concept of genome ordering in the FASTQ format.

NativeFastqWriter

Class for writing to native FASTQ files.

Most users will want FastqWriter, which will write to either native FASTQ
files or TFRecord files, based on the output filename's extension.

Methods:

[bookmark: __init__]

__init__(self, output_path, **kwargs)

Initializer for NativeFastqWriter.

Args:
 output_path: str. The path to which to write the FASTQ file.
 **kwargs: optional arguments; presently ignored.

[bookmark: write]

write(self, proto)

 nucleus.io.genomics_reader – Classes that provide the interface for reading genomics data.

nucleus.io.genomics_reader – Classes that provide the interface for reading genomics data.

Source code: nucleus/io/genomics_reader.py [https://github.com/google/nucleus/tree/master/nucleus/io/genomics_reader.py]

Documentation index: doc_index.md

GenomicsReader defines the core API supported by readers, and is subclassed
directly or indirectly (via DispatchingGenomicsReader) for all concrete
implementations.

TFRecordReader is an implementation of the GenomicsReader API for reading
TFRecord files. This is usable for all data types when encoding data in
protocol buffers.

DispatchingGenomicsReader is an abstract class defined for convenience on top
of GenomicsReader that supports reading from either the native file format or
from TFRecord files of the corresponding protocol buffer used to encode data
of that file type. The input format assumed is dependent upon the filename of
the input data.

Concrete implementations for individual file types (e.g. BED, SAM, VCF, etc.)
reside in type-specific modules in this package. The instantiation of readers
may have reader-specific requirements documented there. General examples of the
iterate() and query() functionality are shown below.

Equivalent ways to iterate through all elements in a reader.
1. Using the reader itself as an iterable object.
kwargs = ... # Reader-specific keyword arguments.
with GenomicsReaderSubClass(output_path, **kwargs) as reader:
 for proto in reader:
 do_something(reader.header, proto)

2. Calling the iterate() method of the reader explicitly.
with GenomicsReaderSubClass(output_path, **kwargs) as reader:
 for proto in reader.iterate():
 do_something(reader.header, proto)

Querying for all elements within a specific region of the genome.
from nucleus.protos import range_pb2
region = range_pb2.Range(reference_name='chr1', start=10, end=20)

with GenomicsReaderSubClass(output_path, **kwargs) as reader:
 for proto in reader.query(region):
 do_something(reader.header, proto)

Classes overview

Name | Description
—–|————
DispatchingGenomicsReader | A GenomicsReader that dispatches based on the file extension.
GenomicsReader | Abstract base class for reading genomics data.
TFRecordReader | A GenomicsReader that reads protocol buffers from a TFRecord file.

Classes

DispatchingGenomicsReader

A GenomicsReader that dispatches based on the file extension.

If '.tfrecord' is present in the filename, a TFRecordReader is used.
Otherwise, a native reader is.

Subclasses of DispatchingGenomicsReader must define the following methods:
 * _native_reader()
 * _record_proto()

Methods:

[bookmark: __init__]

__init__(self, input_path, **kwargs)

[bookmark: iterate]

iterate(self)

[bookmark: query]

query(self, region)

GenomicsReader

Abstract base class for reading genomics data.

In addition to the abstractmethods defined below, subclasses should
also set a `header` member variable in their objects.

Methods:

[bookmark: __init__]

__init__(self)

Initializer.

[bookmark: iterate]

iterate(self)

Returns an iterator for going through all the file's records.

[bookmark: query]

query(self, region)

Returns an iterator for going through the records in the region.

Args:
 region: A nucleus.genomics.v1.Range.

Returns:
 An iterator containing all and only records within the specified region.

TFRecordReader

A GenomicsReader that reads protocol buffers from a TFRecord file.

Example usage:
 reader = TFRecordReader('/tmp/my_file.tfrecords.gz',
 proto=tensorflow.Example)
 for example in reader:
 process(example)

Note that TFRecord files do not have headers, and do not need
to be wrapped in a "with" block.

Methods:

[bookmark: __init__]

__init__(self, input_path, proto, compression_type=None)

Initializes the TFRecordReader.

Args:
 input_path: The filename of the file to read.
 proto: The protocol buffer type the TFRecord file is expected to
 contain. For example, variants_pb2.Variant or reads_pb2.Read.
 compression_type: Either 'ZLIB', 'GZIP', '' (uncompressed), or
 None. If None, __init__ will guess the compression type based on
 the input_path's suffix.

Raises:
 IOError: if there was any problem opening input_path for reading.

[bookmark: c_reader]

c_reader(self)

Returns the underlying C++ reader.

[bookmark: iterate]

iterate(self)

Returns an iterator for going through all the file's records.

[bookmark: query]

query(self, region)

Returns an iterator for going through the records in the region.

NOTE: This function is not currently implemented by TFRecordReader as the
TFRecord format does not provide a general mechanism for fast random access
to elements in genome order.

 nucleus.io.genomics_writer – Classes that provide the interface for writing genomics data.

nucleus.io.genomics_writer – Classes that provide the interface for writing genomics data.

Source code: nucleus/io/genomics_writer.py [https://github.com/google/nucleus/tree/master/nucleus/io/genomics_writer.py]

Documentation index: doc_index.md

GenomicsWriter defines the core API supported by writers, and is subclassed
directly or indirectly (via DispatchingGenomicsWriter) for all concrete
implementations.

TFRecordWriter is an implementation of the GenomicsWriter API for reading
TFRecord files. This is usable for all data types when writing data as
serialized protocol buffers.

DispatchingGenomicsWriter is an abstract class defined for convenience on top
of GenomicsWriter that supports writing to either the native file format or to
TFRecord files of the corresponding protocol buffer used to encode data of
that file type. The output format chosen is dependent upon the filename to which
the data are being written.

Concrete implementations for individual file types (e.g. BED, SAM, VCF, etc.)
reside in type-specific modules in this package. A general example of the write
functionality is shown below.

options is a writer-specific set of options.
options = ...

records is an iterable of protocol buffers of the specific data type.
records = ...

with GenomicsWriterSubClass(output_path, options) as writer:
 for proto in records:
 writer.write(proto)

Classes overview

Name | Description
—–|————
DispatchingGenomicsWriter | A GenomicsWriter that dispatches based on the file extension.
GenomicsWriter | Abstract base class for writing genomics data.
TFRecordWriter | A GenomicsWriter that writes to a TFRecord file.

Classes

DispatchingGenomicsWriter

A GenomicsWriter that dispatches based on the file extension.

If '.tfrecord' is present in the filename, a TFRecordWriter is used.
Otherwise, a native writer is.

Sub-classes of DispatchingGenomicsWriter must define a _native_writer()
method.

Methods:

[bookmark: __init__]

__init__(self, output_path, **kwargs)

Initializer.

Args:
 output_path: str. The output path to which the records are written.
 **kwargs: k=v named args. Keyword arguments used to instantiate the native
 writer, if applicable.

[bookmark: write]

write(self, proto)

GenomicsWriter

Abstract base class for writing genomics data.

A GenomicsWriter only has one method, write, which writes a single
protocol buffer to a file.

Methods:

[bookmark: write]

write(self, proto)

Writes proto to the file.

Args:
 proto: A protocol buffer.

TFRecordWriter

A GenomicsWriter that writes to a TFRecord file.

Example usage:
 writer = TFRecordWriter('/tmp/my_output.tfrecord.gz')
 for record in records:
 writer.write(record)

Note that TFRecord files do not need to be wrapped in a "with" block.

Methods:

[bookmark: __init__]

__init__(self, output_path, header=None, compression_type=None)

Initializer.

Args:
 output_path: str. The output path to which the records are written.
 header: An optional header for the particular data type. This can be
 useful for file types that have logical headers where some operations
 depend on that header information (e.g. VCF using its headers to
 determine type information of annotation fields).
 compression_type: Either 'ZLIB', 'GZIP', '' (uncompressed), or
 None. If None, __init__ will guess the compression type based on
 the input_path's suffix.

Raises:
 IOError: if there was any problem opening output_path for writing.

[bookmark: close]

close(self)

Explicitly closes writer.

[bookmark: write]

write(self, proto)

Writes the proto to the TFRecord file.

 nucleus.io.gff – Classes for reading and writing GFF files.

nucleus.io.gff – Classes for reading and writing GFF files.

Source code: nucleus/io/gff.py [https://github.com/google/nucleus/tree/master/nucleus/io/gff.py]

Documentation index: doc_index.md

The GFF format is described at
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md.

API for reading:

from nucleus.io import gff

Iterate through all records.
with gff.GffReader(input_path) as reader:
 for record in reader:
 print(record)

where record is a nucleus.genomics.v1.GffRecord protocol buffer.

API for writing:

from nucleus.io import gff
from nucleus.protos import gff_pb2

records is an iterable of nucleus.genomics.v1.GffRecord protocol buffers.
records = ...

header = gff_pb2.GffHeader()

Write all records to the desired output path.
with gff.GffWriter(output_path, header) as writer:
 for record in records:
 writer.write(record)

For both reading and writing, if the path provided to the constructor contains
‘.tfrecord’ as an extension, a TFRecord file is assumed and attempted to be
read or written. Otherwise, the filename is treated as a true GFF file.

Files that end in a ‘.gz’ suffix cause the file to be treated as compressed
(with BGZF if it is a true GFF file, and with gzip if it is a TFRecord file).

Classes overview

Name | Description
—–|————
GffReader | Class for reading GffRecord protos from GFF or TFRecord files.
GffWriter | Class for writing GffRecord protos to GFF or TFRecord files.
NativeGffReader | Class for reading from native GFF files.
NativeGffWriter | Class for writing to native GFF files.

Classes

GffReader

Class for reading GffRecord protos from GFF or TFRecord files.

GffWriter

Class for writing GffRecord protos to GFF or TFRecord files.

NativeGffReader

Class for reading from native GFF files.

Most users will want to use GffReader instead, because it dynamically
dispatches between reading native GFF files and TFRecord files based on the
filename's extension.

Methods:

[bookmark: __init__]

__init__(self, input_path)

Initializes a NativeGffReader.

Args:
 input_path: string. A path to a resource containing GFF records.

[bookmark: iterate]

iterate(self)

Returns an iterable of GffRecord protos in the file.

[bookmark: query]

query(self)

Returns an iterator for going through the records in the region.

NOTE: This function is not currently implemented by NativeGffReader though
it could be implemented for sorted, tabix-indexed GFF files.

NativeGffWriter

Class for writing to native GFF files.

Most users will want GffWriter, which will write to either native GFF
files or TFRecord files, based on the output filename's extension.

Methods:

[bookmark: __init__]

__init__(self, output_path, header)

Initializer for NativeGffWriter.

Args:
 output_path: str. The path to which to write the GFF file.
 header: nucleus.genomics.v1.GffHeader. The header that defines all
 information germane to the constituent GFF records.

[bookmark: write]

write(self, proto)

 nucleus.io.gfile – A Python interface for files.

nucleus.io.gfile – A Python interface for files.

Source code: nucleus/io/gfile.py [https://github.com/google/nucleus/tree/master/nucleus/io/gfile.py]

Documentation index: doc_index.md

Classes overview

Name | Description
—–|————
ReadableFile | Wraps gfile.ReadableFile to add iteration, enter/exit and readlines.

Functions overview

Name | Description
—–|————
Exists(filename) |
Glob(pattern) |
Open(filename, mode='r') |

Classes

ReadableFile

Wraps gfile.ReadableFile to add iteration, enter/exit and readlines.

Methods:

[bookmark: __init__]

__init__(self, filename)

[bookmark: readlines]

readlines(self)

Functions

[bookmark: Exists]

Exists(filename)

[bookmark: Glob]

Glob(pattern)

[bookmark: Open]

Open(filename, mode='r')

 nucleus.io.sam – Classes for reading and writing SAM and BAM files.

nucleus.io.sam – Classes for reading and writing SAM and BAM files.

Source code: nucleus/io/sam.py [https://github.com/google/nucleus/tree/master/nucleus/io/sam.py]

Documentation index: doc_index.md

The SAM/BAM/CRAM formats are described at
https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/CRAMv3.pdf

API for reading:

from nucleus.io import sam

with sam.SamReader(input_path) as reader:
 for read in reader:
 print(read)

where read is a nucleus.genomics.v1.Read protocol buffer. input_path will
dynamically decode the underlying records depending the file extension, with
.sam for SAM files, .bam for BAM files, and .cram for CRAM files. It will
also search for an appropriate index file to use to enable calls to the
query() method.

API for writing SAM/BAM:

from nucleus.io import sam

reads is an iterable of nucleus.genomics.v1.Read protocol buffers.
reads = ...

with sam.SamWriter(output_path, header=header) as writer:
 for read in reads:
 writer.write(read)

API for writing CRAM:

ref_path is required for writing CRAM files. If embed_ref, the output CRAM
file will embed reference sequences.
with sam.SamWriter(output_path, header=header, ref_path=ref_path,
 embed_ref=embed_ref) as writer:
 for read in reads:
 writer.write(read)

For both reading and writing, if the path provided to the constructor contains
‘.tfrecord’ as an extension, a TFRecord file is assumed and attempted to be
read or written. Otherwise, the filename is treated as a true SAM/BAM/CRAM file.

For TFRecord files, ending in a ‘.gz’ suffix causes the file to be treated as
compressed with gzip.

Notes on using CRAM with SamReader

Nucleus supports reading from CRAM files using the same API as for SAM/BAM:

from nucleus.io import sam

with sam.SamReader("/path/to/sample.cram") as reader:
 for read in reader:
 print(read)

There is one type of CRAM file, though, that has a slightly more complicated
API. If the CRAM file uses read sequence compression with an external reference
file, and this reference file is no longer accessible in the location specified
by the CRAM file’s “UR” tag and cannot be found in the local genome cache, its
location must be passed to SamReader via the ref_path parameter:

from nucleus.io import sam

cram_path = "/path/to/sample.cram"
ref_path = "/path/to/genome.fasta"
with sam.SamReader(cram_path, ref_path=ref_path) as reader:
 for read in reader:
 print(read)

Unfortunately, htslib is unable to load the ref_path from anything other than a
POSIX filesystem. (htslib plugin filesystems like S3 or GCS buckets won’t work).
For that reason, we don’t recommend the use of CRAM files with external
reference files, but instead suggest using read sequence compression with
embedded reference data. (This has a minor impact on file size, but
significantly improves file access simplicity and safety.)

For more information about CRAM, see:

	The samtools documentation at http://www.htslib.org/doc/samtools.html

	The “Global Options” section of the samtools docs at http://www.htslib.org/doc/samtools.html#GLOBAL_OPTIONS

	How reference sequences are encoded in CRAM at http://www.htslib.org/doc/samtools.html#REFERENCE_SEQUENCES

	Finally, benchmarking of different CRAM options http://www.htslib.org/benchmarks/CRAM.html

Classes overview

Name | Description
—–|————
InMemorySamReader | Python interface class for in-memory SAM/BAM/CRAM reader.
NativeSamReader | Class for reading from native SAM/BAM/CRAM files.
NativeSamWriter | Class for writing to native SAM/BAM/CRAM files.
SamReader | Class for reading Read protos from SAM/BAM/CRAM or TFRecord files.
SamWriter | Class for writing Read protos to SAM or TFRecord files.

Classes

InMemorySamReader

Python interface class for in-memory SAM/BAM/CRAM reader.

Attributes:
 reads: list[nucleus.genomics.v1.Read]. The list of in-memory reads.
 is_sorted: bool, True if reads are sorted.

Methods:

[bookmark: __init__]

__init__(self, reads, is_sorted=False)

[bookmark: iterate]

iterate(self)

Iterate over all records in the reads.

Returns:
 An iterator over nucleus.genomics.v1.Read's.

[bookmark: query]

query(self, region)

Returns an iterator for going through the reads in the region.

Args:
 region: nucleus.genomics.v1.Range. The query region.

Returns:
 An iterator over nucleus.genomics.v1.Read protos.

[bookmark: replace_reads]

replace_reads(self, reads, is_sorted=False)

Replace the reads stored by this reader.

NativeSamReader

Class for reading from native SAM/BAM/CRAM files.

Most users will want to use SamReader instead, because it dynamically
dispatches between reading native SAM/BAM/CRAM files and TFRecord files based
on the filename's extensions.

Methods:

[bookmark: __init__]

__init__(self, input_path, ref_path=None, read_requirements=None, parse_aux_fields=False, hts_block_size=None, downsample_fraction=None, random_seed=None, use_original_base_quality_scores=False)

Initializes a NativeSamReader.

Args:
 input_path: str. A path to a resource containing SAM/BAM/CRAM records.
 Currently supports SAM text format, BAM binary format, and CRAM.
 ref_path: optional str or None. Only used for CRAM decoding, and only
 necessary if the UR encoded path in the CRAM itself needs to be
 overridden. If provided, we will tell the CRAM decoder to use this FASTA
 for the reference sequence.
 read_requirements: optional ReadRequirement proto. If not None, this proto
 is used to control which reads are filtered out by the reader before
 they are passed to the client.
 parse_aux_fields: optional bool, defaulting to False. If False, we do not
 parse the auxiliary fields of the SAM/BAM/CRAM records (see SAM spec for
 details). Parsing the aux fields is unnecessary for many applications,
 and adds a significant parsing cost to access. If you need these aux
 fields, set parse_aux_fields to True and these fields will be parsed and
 populate the appropriate Read proto fields (e.g., read.info).
 hts_block_size: int or None. If specified, this configures the block size
 of the underlying htslib file object. Larger values (e.g. 1M) may be
 beneficial for reading remote files. If None, the reader uses the
 default htslib block size.
 downsample_fraction: float in the interval [0.0, 1.0] or None. If
 specified as a positive float, the reader will only keep each read with
 probability downsample_fraction, randomly. If None or zero, all reads
 are kept.
 random_seed: None or int. The random seed to use with this sam reader, if
 needed. If None, a fixed random value will be assigned.
 use_original_base_quality_scores: optional bool, defaulting to False. If
 True, quality scores are read from OQ tag.

Raises:
 ValueError: If downsample_fraction is not None and not in the interval
 (0.0, 1.0].
 ImportError: If someone tries to load a tfbam file.

[bookmark: iterate]

iterate(self)

Returns an iterable of Read protos in the file.

[bookmark: query]

query(self, region)

Returns an iterator for going through the reads in the region.

NativeSamWriter

Class for writing to native SAM/BAM/CRAM files.

Most users will want SamWriter, which will write to either native SAM/BAM/CRAM
files or TFRecords files, based on the output filename's extensions.

Methods:

[bookmark: __init__]

__init__(self, output_path, header, ref_path=None, embed_ref=False)

Initializer for NativeSamWriter.

Args:
 output_path: str. A path where we'll write our SAM/BAM/CRAM file.
 ref_path: str. Path to the reference file. Required for CRAM file.
 embed_ref: bool. Whether to embed the reference sequences in CRAM file.
 Default is False.
 header: A nucleus.SamHeader proto. The header is used both for writing
 the header, and to control the sorting applied to the rest of the file.

[bookmark: write]

write(self, proto)

SamReader

Class for reading Read protos from SAM/BAM/CRAM or TFRecord files.

SamWriter

Class for writing Read protos to SAM or TFRecord files.

 nucleus.io.sharded_file_utils – Utility functions for working with sharded files.

nucleus.io.sharded_file_utils – Utility functions for working with sharded files.

Source code: nucleus/io/sharded_file_utils.py [https://github.com/google/nucleus/tree/master/nucleus/io/sharded_file_utils.py]

Documentation index: doc_index.md

A sharded file is a single conceptual file that is broken into a collection
of files to make parallelization easier. A sharded file spec is like a
filename for a sharded file; the file spec “/some/path/prefix@200.txt”
says that the sharded file consists of 200 actual files that have names like
“/some/path/prefix-00000-of-00200.txt”, “/some/path/prefix-00001-of-00200.txt”,
etc. This module contains functions for parsing, generating, detecting and
resolving sharded file specs.

Classes overview

Name | Description
—–|————
ShardError | An I/O error.

Functions overview

Name | Description
—–|————
generate_sharded_file_pattern(basename, num_shards, suffix) | Generate a sharded file pattern.
generate_sharded_filenames(spec) | Generate the list of filenames corresponding to the sharding path.
glob_list_sharded_file_patterns(comma_separated_patterns, sep=',') | Generate list of filenames corresponding to comma_separated_patterns.
is_sharded_file_spec(spec) | Returns True if spec is a sharded file specification.
maybe_generate_sharded_filenames(filespec) | Potentially expands sharded filespec into a list of paths.
normalize_to_sharded_file_pattern(spec_or_pattern) | Take a sharding spec or sharding file pattern and return a sharded pattern.
parse_sharded_file_spec(spec) | Parse a sharded file specification.
resolve_filespecs(shard, *filespecs) | Transforms potentially sharded filespecs into their paths for single shard.
sharded_filename(spec, i) | Gets a path appropriate for writing the ith file of a sharded spec.

Classes

ShardError

An I/O error.

Functions

[bookmark: generate_sharded_file_pattern]

generate_sharded_file_pattern(basename, num_shards, suffix)

Generate a sharded file pattern.

Args:
 basename: str. The basename for the files.
 num_shards: int. The number of shards.
 suffix: str. The suffix if there is one or ''.
Returns:
 pattern:

[bookmark: generate_sharded_filenames]

generate_sharded_filenames(spec)

Generate the list of filenames corresponding to the sharding path.

Args:
 spec: str. Represents a filename with a sharding specification.
 e.g., 'gs://some/file@200.txt' represents a file sharded 200 ways.

Returns:
 List of filenames.

Raises:
 ShardError: If spec is not a valid sharded file specification.

[bookmark: glob_list_sharded_file_patterns]

glob_list_sharded_file_patterns(comma_separated_patterns, sep=',')

Generate list of filenames corresponding to `comma_separated_patterns`.

Args:
 comma_separated_patterns: str. A pattern or a comma-separated list of
 patterns that represent file names.
 sep: char. Separator character.

Returns:
 List of filenames, sorted and dedupped.

[bookmark: is_sharded_file_spec]

is_sharded_file_spec(spec)

Returns True if spec is a sharded file specification.

[bookmark: maybe_generate_sharded_filenames]

maybe_generate_sharded_filenames(filespec)

Potentially expands sharded filespec into a list of paths.

This function takes in a potentially sharded filespec and expands it into a
list containing the full set of corresponding concrete sharded file paths. If
the input filespec is not sharded then a list containing just that file path
is returned. This function is useful, for example, when the input to a binary
can either be sharded or not.

Args:
 filespec: String. A potentially sharded filespec to expand.

Returns:
 A list of file paths.

Raises:
 TypeError: if filespec is not in valid string_types.

[bookmark: normalize_to_sharded_file_pattern]

normalize_to_sharded_file_pattern(spec_or_pattern)

Take a sharding spec or sharding file pattern and return a sharded pattern.

The input can be a sharding spec(e.g '/some/file@10') or a sharded file
pattern (e.g. '/some/file-?????-of-00010)

Args:
 spec_or_pattern: str. A sharded file specification or sharded file pattern.

Returns:
 A sharded file pattern.

[bookmark: parse_sharded_file_spec]

parse_sharded_file_spec(spec)

Parse a sharded file specification.

Args:
 spec: str. The sharded file specification. A sharded file spec is one like
 'gs://some/file@200.txt'. Here, '@200' specifies the number of shards.

Returns:
 basename: str. The basename for the files.
 num_shards: int >= 0. The number of shards.
 suffix: str. The suffix if there is one, or '' if not.
Raises:
 ShardError: If the spec is not a valid sharded specification.

[bookmark: resolve_filespecs]

resolve_filespecs(shard, *filespecs)

Transforms potentially sharded filespecs into their paths for single shard.

This function takes a shard number and a varargs of potentially-sharded
filespecs, and returns a list where the filespecs have been resolved into
concrete file paths for a single shard.

This function has a concept of a master filespec, which is used to constrain
and check the validity of other filespecs. The first filespec is considered
the master, and it cannot be None. For example, if master is not sharded, none
of the other specs can be sharded, and vice versa. They must all also have a
consistent sharding (e.g., master is @10, then all others must be @10).

Note that filespecs (except the master) may be None or any other False value,
which are returned as-is in the output list.

Args:
 shard: int >= 0. Our shard number.
 *filespecs: list[str]. Contains all of the filespecs we want to resolve into
 shard-specific file paths.

Returns:
 A list. The first element is the number of shards, which is an int >= 1 when
 filespecs contains sharded paths and 0 if none do. All subsequent
 returned values follow the shard-specific paths for each filespec, in order.

Raises:
 ValueError: if any filespecs are inconsistent.

[bookmark: sharded_filename]

sharded_filename(spec, i)

Gets a path appropriate for writing the ith file of a sharded spec.

 nucleus.io.tabix – Creates tabix indices for VCFs.

nucleus.io.tabix – Creates tabix indices for VCFs.

Source code: nucleus/io/tabix.py [https://github.com/google/nucleus/tree/master/nucleus/io/tabix.py]

Documentation index: doc_index.md

Functions overview

Name | Description
—–|————
build_csi_index(path, min_shift) | Builds a csi index for VCF at the specified path.
build_index(path) | Builds a tabix index for VCF at the specified path.

Functions

[bookmark: build_csi_index]

build_csi_index(path, min_shift)

Builds a csi index for VCF at the specified path.

[bookmark: build_index]

build_index(path)

Builds a tabix index for VCF at the specified path.

 nucleus.io.tfrecord – I/O for TFRecord files.

nucleus.io.tfrecord – I/O for TFRecord files.

Source code: nucleus/io/tfrecord.py [https://github.com/google/nucleus/tree/master/nucleus/io/tfrecord.py]

Documentation index: doc_index.md

Utilities for reading and writing TFRecord files, especially those containing
serialized TensorFlow Example protocol buffers.

Functions overview

Name | Description
—–|————
Reader(path, proto=None, compression_type=None) | A TFRecordReader that defaults to tf.Example protos.
Writer(path, compression_type=None) | A convenience wrapper around genomics_writer.TFRecordWriter.
read_shard_sorted_tfrecords(path, key, proto=None, max_records=None, compression_type=None) | Yields the parsed records in a TFRecord file path in sorted order.
read_tfrecords(path, proto=None, max_records=None, compression_type=None) | Yields the parsed records in a TFRecord file path.
write_tfrecords(protos, output_path, compression_type=None) | Writes protos to output_path.

Functions

[bookmark: Reader]

Reader(path, proto=None, compression_type=None)

A TFRecordReader that defaults to tf.Example protos.

[bookmark: Writer]

Writer(path, compression_type=None)

A convenience wrapper around genomics_writer.TFRecordWriter.

[bookmark: read_shard_sorted_tfrecords]

read_shard_sorted_tfrecords(path, key, proto=None, max_records=None, compression_type=None)

Yields the parsed records in a TFRecord file path in sorted order.

The input TFRecord file must have each shard already in sorted order when
using the key function for comparison (but elements can be interleaved across
shards). Under those constraints, the elements will be yielded in a global
sorted order.

Args:
 path: String. A path to a TFRecord-formatted file containing protos.
 key: Callable. A function that takes as input a single instance of the proto
 class and returns a value on which the comparison for sorted ordering is
 performed.
 proto: A proto class. proto.FromString() will be called on each serialized
 record in path to parse it.
 max_records: int >= 0 or None. Maximum number of records to read from path.
 If None, the default, all records will be read.
 compression_type: 'GZIP', 'ZLIB', '' (uncompressed), or None to autodetect
 based on file extension.

Yields:
 proto.FromString() values on each record in path in sorted order.

[bookmark: read_tfrecords]

read_tfrecords(path, proto=None, max_records=None, compression_type=None)

Yields the parsed records in a TFRecord file path.

Note that path can be sharded filespec (path@N) in which case this function
will read each shard in order; i.e. shard 0 will read each entry in order,
then shard 1, ...

Args:
 path: String. A path to a TFRecord file containing protos.
 proto: A proto class. proto.FromString() will be called on each serialized
 record in path to parse it.
 max_records: int >= 0 or None. Maximum number of records to read from path.
 If None, the default, all records will be read.
 compression_type: 'GZIP', 'ZLIB', '' (uncompressed), or None to autodetect
 based on file extension.

Yields:
 proto.FromString() values on each record in path in order.

[bookmark: write_tfrecords]

write_tfrecords(protos, output_path, compression_type=None)

Writes protos to output_path.

This function writes serialized strings of each proto in protos to output_path
in their original order. If output_path is a sharded file (e.g., foo@2), this
function will write the protos spread out as evenly as possible among the
individual components of the sharded spec (e.g., foo-00000-of-00002 and
foo-00001-of-00002). Note that the order of records in the sharded files may
differ from the order in protos due to the striping.

Args:
 protos: An iterable of protobufs. The objects we want to write out.
 output_path: str. The filepath where we want to write protos.
 compression_type: 'GZIP', 'ZLIB', '' (uncompressed), or None to autodetect
 based on file extension.

 nucleus.io.vcf – Classes for reading and writing VCF files.

nucleus.io.vcf – Classes for reading and writing VCF files.

Source code: nucleus/io/vcf.py [https://github.com/google/nucleus/tree/master/nucleus/io/vcf.py]

Documentation index: doc_index.md

The VCF format is described at
https://samtools.github.io/hts-specs/VCFv4.3.pdf

API for reading:

from nucleus.io import vcf

with vcf.VcfReader(input_path) as reader:
 for variant in reader:
 print(variant)

API for writing:

from nucleus.io import vcf

variants is an iterable of nucleus.genomics.v1.Variant protocol buffers.
variants = ...

with vcf.VcfWriter(output_path, header=header) as writer:
 for variant in variants:
 writer.write(variant)

The class attempts to infer the file format (TFRecord vs VCF) from the file
path provided to the constructor.

	For files that end with ‘.tfrecord’ and ‘.tfrecord.gz’ (a gzipped version),
a TFRecord file is assumed and is attempted to be read or written.

	For all other files, the VCF format will be used.

VCF format used in writing is inferred from file paths:
- ending in ‘.bcf.gz’: BGZF compressed BCF format will be written;
- ending in ‘.bcf’: uncompressed BCF format will be written;
- ending in ‘.gz’ and not in ‘.bcf.gz’: BGZP compressed VCF format will be
written;
- all other suffixes: uncompressed VCF format will be written.

VCF format used in reading is inferred from the contents of the file.

Classes overview

Name | Description
—–|————
InMemoryVcfReader | Class for “reading” Variant protos from an in-memory cache of variants.
NativeVcfReader | Class for reading from native VCF files.
NativeVcfWriter | Class for writing to native VCF files.
VcfHeaderCache | This class creates a cache of accessors to structured fields in Variants.
VcfReader | Class for reading Variant protos from VCF or TFRecord files.
VcfWriter | Class for writing Variant protos to VCF or TFRecord files.

Classes

InMemoryVcfReader

Class for "reading" Variant protos from an in-memory cache of variants.

```python
from nucleus.io import vcf
from nucleus.protos import variants_pb2

variants = [... Variant protos ...]
header = variants_pb2.VcfHeader()

with vcf.InMemoryVcfReader(variants, header) as reader:
  for variant in reader:
    print(variant)





This class accepts a collection of variants and optionally a header and
provides all of the standard API functions of VcfReader but instead of
fetching variants from a file the variants are queried from an in-memory cache
of variant protos.

Note that the input variants provided to this class aren’t checked in any way,
and their ordering determines the order of variants emitted by this class for
the iterate() and query() operations. This is intentional, to make this class
easy to use for testing where you often want to use less-than-perfectly formed
inputs. In order to fully meet the contract of a standard VcfReader, variants
should be sorted by their contig ordering and then by their start and finally
by their ends.

Implementation note:
The current implementation will be very slow for query() if the provided
cache of variants is large, as we do a O(n) search to collect all of the
overlapping variants for each query. There are several straightforward
optimizations to do if we need/want to scale this up. (a) sort the variants
and use a binary search to find overlapping variants (b) partition the
variants by contig, so we have dict[contig] => [variants on contig], which
allows us to completely avoid considering any variants on any other contigs.
Neither of these optimizations are worth it if len(variants) is small, but
it may be worth considering if we want to use this functionality with a
large number of variants.


#### Methods:
<a name="__init__"></a>
##### `__init__(self, variants, header=None)`





Creates a VCFReader backed by a collection of variants.

Args:
variants: list of nucleus.genomics.v1.Variant protos we will “read”
from.
header: a VCFHeader object to provide as a result to calls to self.header,
or None, indicating that we don’t have a header associated with this
reader.


<a name="iterate"></a>
##### `iterate(self)`


<a name="query"></a>
##### `query(self, region)`


### NativeVcfReader





Class for reading from native VCF files.

Most users will want to use VcfReader instead, because it dynamically
dispatches between reading native VCF files and TFRecord files based
on the filename’s extensions.


#### Methods:
<a name="__init__"></a>
##### `__init__(self, input_path, excluded_info_fields=None, excluded_format_fields=None, store_gl_and_pl_in_info_map=False, header=None)`





Initializer for NativeVcfReader.

Args:
input_path: str. The path to the VCF file to read.
excluded_info_fields: list(str). A list of INFO field IDs that should not
be parsed into the Variants. If None, all INFO fields are included.
excluded_format_fields: list(str). A list of FORMAT field IDs that should
not be parsed into the Variants. If None, all FORMAT fields are
included.
store_gl_and_pl_in_info_map: bool. If True, the “GL” and “PL” FORMAT
fields are stored in the VariantCall.info map rather than as top-level
values in the VariantCall.genotype_likelihood field.
header: If not None, specifies the variants_pb2.VcfHeader. The file at
input_path must not contain any header information.


<a name="c_reader"></a>
##### `c_reader(self)`





Returns the underlying C++ reader.


<a name="iterate"></a>
##### `iterate(self)`





Returns an iterable of Variant protos in the file.


<a name="query"></a>
##### `query(self, region)`





Returns an iterator for going through variants in the region.


### NativeVcfWriter





Class for writing to native VCF files.

Most users will want VcfWriter, which will write to either native VCF
files or TFRecords files, based on the output filename’s extensions.


#### Methods:
<a name="__init__"></a>
##### `__init__(self, output_path, header=None, round_qualities=False, excluded_info_fields=None, excluded_format_fields=None, retrieve_gl_and_pl_from_info_map=False, exclude_header=False)`





Initializer for NativeVcfWriter.

Args:
output_path: str. The path to which to write the VCF file.
header: nucleus.genomics.v1.VcfHeader. The header that defines all
information germane to the constituent variants. This includes contigs,
FILTER fields, INFO fields, FORMAT fields, samples, and all other
structured and unstructured header lines.
round_qualities: bool. If True, the QUAL field is rounded to one point
past the decimal.
excluded_info_fields: list(str). A list of INFO field IDs that should not
be written to the output. If None, all INFO fields are included.
excluded_format_fields: list(str). A list of FORMAT field IDs that should
not be written to the output. If None, all FORMAT fields are included.
retrieve_gl_and_pl_from_info_map: bool. If True, the “GL” and “PL” FORMAT
fields are retrieved from the VariantCall.info map rather than from the
top-level value in the VariantCall.genotype_likelihood field.
exclude_header: bool. If True, write a headerless VCF.


<a name="write"></a>
##### `write(self, proto)`


### VcfHeaderCache





This class creates a cache of accessors to structured fields in Variants.

The INFO and FORMAT fields within Variant protos are structured and typed,
with types defined by the corresponding VCF header. This cache object provides
provides {info,format}field{get,set}_fn functions that can be used to
extract information from the structured Variant protos based on the types
defined therein.

NOTE: Users should not need to interact with this class at all. It is used
by the variant_utils.{get,set}_info and variantcall_utils.{get,set}_format
functions for interacting with the INFO and FORMAT fields in a Variant proto.


#### Methods:
<a name="__init__"></a>
##### `__init__(self, header)`





Initializer.

Args:
header: nucleus.genomics.v1.VcfHeader proto. Used to define the accessor
functions needed.


<a name="format_field_get_fn"></a>
##### `format_field_get_fn(self, field_name)`





Returns a callable that gets the given FORMAT field based on its type.


<a name="format_field_set_fn"></a>
##### `format_field_set_fn(self, field_name)`





Returns a callable that sets the given FORMAT field based on its type.


<a name="info_field_get_fn"></a>
##### `info_field_get_fn(self, field_name)`





Returns a callable that extracts the given INFO field based on its type.

Args:
field_name: str. The INFO field name of interest, e.g. ‘AA’, ‘DB’, ‘AF’.

Returns:
A callable used to extract the given INFO field from a Variant proto.


<a name="info_field_set_fn"></a>
##### `info_field_set_fn(self, field_name)`





Returns a callable that sets the given INFO field based on its type.


### VcfReader





Class for reading Variant protos from VCF or TFRecord files.


#### Methods:
<a name="c_reader"></a>
##### `c_reader(self)`





Returns the underlying C++ reader.

Note that the C++ reader might be a VcfReader or it might be a
TFRecordReader, depending on the input_path’s extension.


### VcfWriter





Class for writing Variant protos to VCF or TFRecord files.












          

      

      

    

  

  
    

    nucleus.pip_package.setup – Fake setup.py module for installing Nucleus.
    

    
 
  

    
      
          
            
  
nucleus.pip_package.setup – Fake setup.py module for installing Nucleus.

Source code: nucleus/pip_package/setup.py [https://github.com/google/nucleus/tree/master/nucleus/pip_package/setup.py]

Documentation index: doc_index.md



Usually, setup.py is invoked twice:  first, to build the pip package
and second to install it.

This setup.py is only used for installation; build_pip_package.sh is
used to create the package.  We do it this way because we need our
package to include symbolic links, which normal setup.py doesn’t
support.

For the same reason, this setup.py is not implemented using setuptools.
Instead, we directly implement the four commands run by pip install
(https://pip.pypa.io/en/stable/reference/pip_install/#id46):


	setup.py egg_info [–egg-base XXX]


	setup.py install –record XXX [–single-version-externally-managed]
[–root XXX] [–compile|–no-compile] [–install-headers XXX]


	setup.py bdist_wheel -d XXX


	setup.py clean





Functions overview

Name | Description
—–|————
copy_egg_info(dest_dir) | Copies the .egg-info directory to the specified location.
find_destination(is_user) | Returns the directory we are supposed to install into.
main() |
touch(fname) |



Functions

[bookmark: copy_egg_info]


copy_egg_info(dest_dir)

Copies the .egg-info directory to the specified location.

Args:
  dest_dir: str. The destination directory.

Returns:
  0 on success, 1 on failure.





[bookmark: find_destination]



find_destination(is_user)

Returns the directory we are supposed to install into.





[bookmark: main]



main()

[bookmark: touch]



touch(fname)






          

      

      

    

  

  
    

    nucleus.testing.test_utils – Utilities to help with testing code.
    

    
 
  

    
      
          
            
  
nucleus.testing.test_utils – Utilities to help with testing code.

Source code: nucleus/testing/test_utils.py [https://github.com/google/nucleus/tree/master/nucleus/testing/test_utils.py]

Documentation index: doc_index.md




Functions overview

Name | Description
—–|————
assert_called_once_workaround(mock) | Asserts that a mock has been called exactly once.
assert_not_called_workaround(mock) | Asserts that a mock has not been called.
cc_iterable_len(cc_iterable) | Count the number of elements in an Iterable object.
genomics_core_testdata(filename) | Gets the path to a testdata named filename in util/testdata.
genomics_testdata(path, datadir=DATADIR) | Gets the path to a testdata file in genomics at relative path.
iterable_len(iterable) | Returns the length of a Python iterable, by advancing it.
make_read(bases, start, quals=None, cigar=None, mapq=50, chrom='chr1', name=None) | Makes a nucleus.genomics.v1.Read for testing.
make_variant(chrom='chr1', start=10, alleles=None, end=None, filters=None, qual=None, gt=None, gq=None, sample_name=None, gls=None, is_phased=None, ad=None) | Creates a new Variant proto from args.
make_variant_multiple_calls(chrom='chr1', start=10, alleles=None, end=None, filters=None, qual=None, gts=None, gqs=None, sample_names=None, glss=None, is_phased=None, ad=None) | Creates a new Variant proto from args that contains multi-sample calls.
set_list_values(list_value, values) | Sets a ListValue to have the values in values.
test_tmpfile(name, contents=None) | Returns a path to a tempfile named name in the test_tmpdir.



Functions

[bookmark: assert_called_once_workaround]


assert_called_once_workaround(mock)

Asserts that a mock has been called exactly once.

See assert_not_called_workaround for the backstory on why this function
exists.

Args:
  mock: The mock that should have been called exactly once.

Raises:
  AssertionError: mock wasn't called exactly once.





[bookmark: assert_not_called_workaround]



assert_not_called_workaround(mock)

Asserts that a mock has not been called.

There's a bug in mock where some of the assert functions on a mock are being
dropped when that mock is created with an autospec:

  https://bugs.python.org/issue28380

The mock 2.0.0 backport doesn't have the fix yet. The required patch is:

  https://bugs.python.org/file44991/fix_autospecced_mock_functions.patch

but the current mock (checked 07/22/17) backport code is missing the fix:

  https://github.com/testing-cabal/mock/blob/master/mock/mock.py#L315

This is an open issue on the mock github repo:

  https://github.com/testing-cabal/mock/issues/398

And they claim that it'll be a few months (as of April 2017) before it is
incorporated into the backport.

Args:
  mock: The mock to assert hasn't been called.

Raises:
  AssertionError: mock has been called.





[bookmark: cc_iterable_len]



cc_iterable_len(cc_iterable)

Count the number of elements in an Iterable object.

Args:
  cc_iterable: a CLIF-wrap of a subclass of the C++ Iterable class.

Returns:
  integer count





[bookmark: genomics_core_testdata]



genomics_core_testdata(filename)

Gets the path to a testdata named filename in util/testdata.

Args:
  filename: The name of a testdata file in the core genomics testdata
    directory. For example, if you have a test file in
    "third_party/nucleus/util/testdata/foo.txt", filename should be
    "foo.txt" to get a path to it.

Returns:
  The absolute path to a testdata file.





[bookmark: genomics_testdata]



genomics_testdata(path, datadir=DATADIR)

Gets the path to a testdata file in genomics at relative path.

Args:
  path: A path to a testdata file *relative* to the genomics root
    directory. For example, if you have a test file in
    "datadir/nucleus/testdata/foo.txt", path should be
    "nucleus/testdata/foo.txt" to get a path to it.
  datadir: The path of the genomics root directory *relative* to
    the testing source directory.

Returns:
  The absolute path to a testdata file.





[bookmark: iterable_len]



iterable_len(iterable)

Returns the length of a Python iterable, by advancing it.





[bookmark: make_read]



make_read(bases, start, quals=None, cigar=None, mapq=50, chrom='chr1', name=None)

Makes a nucleus.genomics.v1.Read for testing.





[bookmark: make_variant]



make_variant(chrom='chr1', start=10, alleles=None, end=None, filters=None, qual=None, gt=None, gq=None, sample_name=None, gls=None, is_phased=None, ad=None)

Creates a new Variant proto from args.

Args:
  chrom: str. The reference_name for this variant.
  start: int. The starting position of this variant.
  alleles: list of str with at least one element. alleles[0] is the reference
    bases and alleles[1:] will be set to alternate_bases of variant. If None,
    defaults to ['A', 'C'].
  end: int or None. If not None, the variant's end will be set to this value.
    If None, will be set to the start + len(reference_bases).
  filters: str, list of str, or None. Sets the filters field of the variant to
    this value if not None. If filters is a string `value`, this is equivalent
    to an argument [`value`]. If None, no value will be assigned to the
    filters field.
  qual: int or None. The quality score for this variant. If None, no quality
    score will be written in the Variant.
  gt: A list of ints, or None. If present, creates a VariantCall in Variant
    with genotype field set to this value. The special 'DEFAULT' value, if
    provided, will set the genotype to [0, 1]. This is the default behavior.
  gq: int or None. If not None and gt is not None, we will add an this GQ
    value to our VariantCall.
  sample_name: str or None. If not None and gt is not None, sets the
    call_set_name of our VariantCall to this value.
  gls: array-list of float, or None. If not None and gt is not None, sets the
    genotype_likelihoods of our VariantCall to this value.
  is_phased: bool. Indicates whether a VariantCall should be phased.
  ad: list of allelic depths.

Returns:
  nucleus.genomics.v1.Variant proto.





[bookmark: make_variant_multiple_calls]



make_variant_multiple_calls(chrom='chr1', start=10, alleles=None, end=None, filters=None, qual=None, gts=None, gqs=None, sample_names=None, glss=None, is_phased=None, ad=None)

Creates a new Variant proto from args that contains multi-sample calls.

Args:
  chrom: str. The reference_name for this variant.
  start: int. The starting position of this variant.
  alleles: list of str with at least one element. alleles[0] is the reference
    bases and alleles[1:] will be set to alternate_bases of variant. If None,
      defaults to ['A', 'C'].
  end: int or None. If not None, the variant's end will be set to this value.
    If None, will be set to the start + len(reference_bases).
  filters: str, list of str, or None. Sets the filters field of the variant to
    this value if not None. If filters is a string `value`, this is equivalent
    to an argument [`value`]. If None, no value will be assigned to the
    filters field.
  qual: int or None. The quality score for this variant. If None, no quality
    score will be written in the Variant.
  gts: A list of lists of ints. For each list in this list, creates a
    VariantCall in Variant with genotype field set to this value.
  gqs: A list of ints or None. Must match the gts arg if specified. Sets the
    GQ value of corresponding VariantCall.
  sample_names: A list of strs or None. Must match the gts arg if specified.
    Sets the call_set_name of the corresponding VariantCall.
  glss: A list of array-lists of float, or None. Must match the gts arg if
    specified. Sets the genotype_likelihoods of the corresponding VariantCall.
  is_phased: list of bools. Must match the gts arg if specified. Indicates
    whether the corresponding VariantCall should be phased.
  ad: list of allelic depths. These are added together to calculate DP.

Returns:
  nucleus.genomics.v1.Variant proto.





[bookmark: set_list_values]



set_list_values(list_value, values)

Sets a ListValue to have the values in values.





[bookmark: test_tmpfile]



test_tmpfile(name, contents=None)

Returns a path to a tempfile named name in the test_tmpdir.

Args:
  name: str; the name of the file, should not contain any slashes.
  contents: bytes, or None. If not None, tmpfile's contents will be set to
    contents before returning the path.

Returns:
  str path to a tmpfile with filename name in our test tmpfile directory.










          

      

      

    

  

  
    

    nucleus.util.cigar – Utility functions for working with alignment CIGAR operations.
    

    
 
  

    
      
          
            
  
nucleus.util.cigar – Utility functions for working with alignment CIGAR operations.

Source code: nucleus/util/cigar.py [https://github.com/google/nucleus/tree/master/nucleus/util/cigar.py]

Documentation index: doc_index.md



The CIGAR format is defined within the SAM spec, available at
https://samtools.github.io/hts-specs/SAMv1.pdf

This module provides utility functions for interacting with the parsed
representations of CIGAR strings.


Functions overview

Name | Description
—–|————
alignment_length(cigar_units) | Computes the span in basepairs of the cigar units.
format_cigar_units(cigar_units) | Returns the string version of an iterable of CigarUnit protos.
parse_cigar_string(cigar_str) | Parse a cigar string into a list of cigar units.
to_cigar_unit(source) | Creates a cigar_pb2 CigarUnit from source.
to_cigar_units(source) | Converts object to a list of CigarUnit.



Functions

[bookmark: alignment_length]


alignment_length(cigar_units)

Computes the span in basepairs of the cigar units.

Args:
  cigar_units: iterable[CigarUnit] whose alignment length we want to compute.

Returns:
  The number of basepairs spanned by the cigar_units.





[bookmark: format_cigar_units]



format_cigar_units(cigar_units)

Returns the string version of an iterable of CigarUnit protos.

Args:
  cigar_units: iterable[CigarUnit] protos.

Returns:
  A string representation of the CigarUnit protos that conforms to the
  CIGAR string specification.





[bookmark: parse_cigar_string]



parse_cigar_string(cigar_str)

Parse a cigar string into a list of cigar units.

For example, if cigar_str is 150M2S, this function will return:

[
  CigarUnit(operation=ALIGNMENT_MATCH, operation_length=150),
  CigarUnit(operation=SOFT_CLIP, operation_length=2)
]

Args:
  cigar_str: str containing a valid cigar.

Returns:
  list[cigar_pb2.CigarUnit].

Raises:
  ValueError: If cigar_str isn't a well-formed CIGAR.





[bookmark: to_cigar_unit]



to_cigar_unit(source)

Creates a cigar_pb2 CigarUnit from source.

This function attempts to convert source into a CigarUnit protobuf. If
source is a string, it must be a single CIGAR string specification like
'12M'. If source is a tuple or a list, must have exactly two elements
(operation_length, opstr). operation_length can be a string or int, and must
be >= 1. opstr should be a single character CIGAR specification (e.g., 'M').
If source is already a CigarUnit, it is just passed through unmodified.

Args:
  source: many types allowed. The object we want to convert to a CigarUnit
    proto.

Returns:
  CigarUnit proto with operation_length and operation set to values from
    source.

Raises:
  ValueError: if source cannot be converted or is malformed.





[bookmark: to_cigar_units]



to_cigar_units(source)

Converts object to a list of CigarUnit.

This function attempts to convert source into a list of CigarUnit protos.
If source is a string, we assume it is a CIGAR string and call
parse_cigar_string on it, returning the result. It not, we assume it's an
iterable containing element to be converted with to_cigar_unit(). The
resulting list of converted elements is returned.

Args:
  source: str or iterable to convert to CigarUnit protos.

Returns:
  list[CigarUnit].










          

      

      

    

  

  
    

    nucleus.util.errors – Library of application-specific errors.
    

    
 
  

    
      
          
            
  
nucleus.util.errors – Library of application-specific errors.

Source code: nucleus/util/errors.py [https://github.com/google/nucleus/tree/master/nucleus/util/errors.py]

Documentation index: doc_index.md




Classes overview

Name | Description
—–|————
CommandLineError | Exception class related to invalid command-line flags.
Error | Base class for core error types.



Functions overview

Name | Description
—–|————
clean_commandline_error_exit(allowed_exceptions=(Error, CommandLineError), exit_value=errno.ENOENT) | Wraps commands to capture certain exceptions and exit without stacktraces.
log_and_raise(msg, exception_class=Error) | Logs the given message at ERROR level and raises exception.



Classes


CommandLineError

Exception class related to invalid command-line flags.







Error

Base class for core error types.








Functions

[bookmark: clean_commandline_error_exit]


clean_commandline_error_exit(allowed_exceptions=(Error, CommandLineError), exit_value=errno.ENOENT)

Wraps commands to capture certain exceptions and exit without stacktraces.

This function is intended to wrap all code within main() of Python binaries
to provide a mechanism for user errors to exit abnormally without causing
exceptions to be thrown. Any exceptions that are subclasses of those listed
in `allowed_exceptions` will be caught and the program will quietly exit with
`exit_value`. Other exceptions are propagated normally.

NOTE: This function should only be used as a context manager and its usage
should be limited to main().

Args:
  allowed_exceptions: [`tuple of Exception`]. A tuple of Exception classes
    that should not be raised, but instead quietly caused to exit the program.
  exit_value: [`int`]. The value to return upon program exit.

Yields:
  The yield in this function is used to allow the block nested in the "with"
  statement to be executed.





[bookmark: log_and_raise]



log_and_raise(msg, exception_class=Error)

Logs the given message at ERROR level and raises exception.

Args:
  msg: [`string`]. The message to log and use in the raised exception.
  exception_class: [`Exception`]. The class of exception to raise.

Raises:
  Error: An exception of the type specified by the input exception_class.










          

      

      

    

  

  
    

    nucleus.util.genomics_math – Mathematics functions for working with genomics data.
    

    
 
  

    
      
          
            
  
nucleus.util.genomics_math – Mathematics functions for working with genomics data.

Source code: nucleus/util/genomics_math.py [https://github.com/google/nucleus/tree/master/nucleus/util/genomics_math.py]

Documentation index: doc_index.md



A quick note on terminology here.

There are a bunch kinds of probabilities used commonly in genomics:

– pError: the probability of being wrong.
– pTrue: the probability of being correct.

Normalized probabilities vs. unnormalized likelihoods:

– Normalized probabilities: p_1, …, p_n such that sum(p_i) == 1 are said
said to be normalized because they represent a valid probability
distribution over the states 1 … n.
– Unnormalized likelihoods: p_1, …, p_n where sum(p_i) != 1. These are not
normalized and so aren’t a valid probabilities distribution.

To add even more complexity, probabilities are often represented in three
semi-equivalent spaces:

– Real-space: the classic space, with values ranging from [0.0, 1.0]
inclusive.
– log10-space: If p is the real-space value, in log10-space this would be
represented as log10(p). How the p == 0 case is handled is often function
dependent, which may accept/return -Inf or not handle the case entirely.
– Phred-scaled: See https://en.wikipedia.org/wiki/Phred_quality_score for
more information. Briefly, the Phred-scale maintains resolution in the lower
parts of the probability space using integer quality scores (though using
ints is optional, really). The phred-scale is defined as

 `phred(p) = -10 * log10(p)`





where p is a real-space probability.

The functions in math.h dealing with probabilities are very explicit about what
kinds of probability and representation they expect and return, as unfortunately
these are all commonly represented as doubles in C++. Though it is tempting to
address this issue with classic software engineering practices like creating
a Probability class, in practice this is extremely difficult to do as this
code is often performance critical and the low-level mathematical operations
used in this code (e.g., log10) don’t distiguish themselves among the types
of probabilities.


Functions overview

Name | Description
—–|————
log10_binomial(k, n, p) | Calculates numerically-stable value of log10(binomial(k, n, p)).
log10sumexp(log10_probs) | Returns log10(sum(10^log10_probs)) computed in a numerically-stable way.
normalize_log10_probs(log10_probs) | Approximately normalizes log10 probabilities.
perror_to_bounded_log10_perror(perror, min_prob=1.0 - _MAX_CONFIDENCE) | Computes log10(p) for the given probability.
ptrue_to_bounded_phred(ptrue, max_prob=_MAX_CONFIDENCE) | Computes the Phred-scaled confidence from the given ptrue probability.



Functions

[bookmark: log10_binomial]


log10_binomial(k, n, p)

Calculates numerically-stable value of log10(binomial(k, n, p)).

Returns the log10 of the binomial density for k successes in n trials where
each success has a probability of occurring of p.

In real-space, we would calculate:

   result = (n choose k) * (1-p)^(n-k) * p^k

This function computes the log10 of result, which is:

   log10(result) = log10(n choose k) + (n-k) * log10(1-p) + k * log10(p)

This is equivalent to invoking the R function:
  dbinom(x=k, size=n, prob=p, log=TRUE)

See https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Binomial.html
for more details on the binomial.

Args:
  k: int >= 0. Number of successes.
  n: int >= k. Number of trials.
  p: 0.0 <= float <= 1.0. Probability of success.

Returns:
  log10 probability of seeing k successes in n trials with p.





[bookmark: log10sumexp]



log10sumexp(log10_probs)

Returns log10(sum(10^log10_probs)) computed in a numerically-stable way.

Args:
  log10_probs: array-like of floats. An array of log10 probabilties.

Returns:
  Float.





[bookmark: normalize_log10_probs]



normalize_log10_probs(log10_probs)

Approximately normalizes log10 probabilities.

This function normalizes log10 probabilities. What this means is that we
return an equivalent array of probabilities but whereas sum(10^log10_probs) is
not necessarily 1.0, the resulting array is sum(10^result) ~= 1.0. The ~=
indicates that the result is not necessarily == 1.0 but very close.

This function is a fast and robust approximation of the true normalization of
a log10 transformed probability vector. To understand the approximation,
let's start with the exact calculation. Suppose I have three models, each
emitting a probability that some data was generated by that model:

  data = {0.1, 0.01, 0.001} => probabilities from models A, B, and C

These probabilities are unnormalized, in the sense that the total probability
over the vector doesn't sum to 1 (sum(data) = 0.111). In many applications we
want to normalize this vector so that sum(normalized(data)) = 1 and the
relative magnitudes of the original probabilities are preserved (i.e,:

  data[i] / data[j] = normalized(data)[i] / normalized(data)[j]

for all pairs of values indexed by i and j. For much of the work we do in
genomics, we have so much data that representing these raw probability
vectors in real-space risks numeric underflow/overflow, so we instead
represent our probability vectors in log10 space:

  log10_data = log10(data) = {-1, -2, -3}

Given that we expect numeric problems in real-space, normalizing this log10
vector is hard, because the standard way you'd do the normalization is via:

  data[i] = data[i] / sum(data)
  log10_data[i] = log10_data[i] - log10(sum(10^data))

But computing the sum of log10 values this way is dangerous because the naive
implementation converts back to real-space to do the sum, the very operation
we're trying to avoid due to numeric instability.

This function implements an approximate normalization, which relaxes the need
for an exact calculation of the sum. This function ensures that the
normalization is numerically safe at the expense of the sum not being exactly
equal to 1 but rather just close.

Args:
  log10_probs: array-like of floats. An array of log10 probabilties.

Returns:
  np.array with the same shape as log10_probs but where sum(10^result) ~= 1.0.

Raises:
  ValueError: if any log10_probs > 0.0





[bookmark: perror_to_bounded_log10_perror]



perror_to_bounded_log10_perror(perror, min_prob=1.0 - _MAX_CONFIDENCE)

Computes log10(p) for the given probability.

The log10 probability is capped by -_MAX_CONFIDENCE.

Args:
  perror: float. The probability to log10.
  min_prob: float. The minimum allowed probability.

Returns:
  log10(p).

Raises:
  ValueError: If probability is outside of [0.0, 1.0].





[bookmark: ptrue_to_bounded_phred]



ptrue_to_bounded_phred(ptrue, max_prob=_MAX_CONFIDENCE)

Computes the Phred-scaled confidence from the given ptrue probability.

See https://en.wikipedia.org/wiki/Phred_quality_score for more information.
The quality score is capped by _MAX_CONFIDENCE.

Args:
  ptrue: float. The ptrue probability to Phred scale.
  max_prob: float. The maximum allowed probability.

Returns:
  Phred-scaled version of 1 - ptrue.

Raises:
  ValueError: If ptrue is outside of [0.0, 1.0].










          

      

      

    

  

  
    

    nucleus.util.proto_utils – Utility library for working with protobufs.
    

    
 
  

    
      
          
            
  
nucleus.util.proto_utils – Utility library for working with protobufs.

Source code: nucleus/util/proto_utils.py [https://github.com/google/nucleus/tree/master/nucleus/util/proto_utils.py]

Documentation index: doc_index.md




Functions overview

Name | Description
—–|————
uses_fast_cpp_protos_or_die() | Raises an error if a slow protobuf implementation is being used.



Functions

[bookmark: uses_fast_cpp_protos_or_die]


uses_fast_cpp_protos_or_die()

Raises an error if a slow protobuf implementation is being used.










          

      

      

    

  

  
    

    nucleus.util.ranges – Utilities for Range overlap detection.
    

    
 
  

    
      
          
            
  
nucleus.util.ranges – Utilities for Range overlap detection.

Source code: nucleus/util/ranges.py [https://github.com/google/nucleus/tree/master/nucleus/util/ranges.py]

Documentation index: doc_index.md




Classes overview

Name | Description
—–|————
RangeSet | Fast overlap detection of a genomic position against a database of Ranges.



Functions overview

Name | Description
—–|————
as_tuple(range_) | Returns a Python tuple (reference_name, start, end).
bed_parser(filename) | Parses Range objects from a BED-formatted file object.
bedpe_parser(filename) | Parses Range objects from a BEDPE-formatted file object.
contigs_dict(contigs) | Creates a dictionary for contigs.
contigs_n_bases(contigs) | Returns the sum of all n_bases of contigs.
expand(region, n_bp, contig_map=None) | Expands region by n_bp in both directions.
find_max_overlapping(query_range, search_ranges) | Gets the index of the element in search_ranges with max overlap with query.
from_regions(regions, contig_map=None) | Parses each region of regions into a Range proto.
length(region) | Returns the length in basepairs of region.
make_position(chrom, position, reverse_strand=False) | Returns a nucleus.genomics.v1.Position.
make_range(chrom, start, end) | Returns a nucleus.genomics.v1.Range.
overlap_len(range1, range2) | Computes the number of overlapping bases of range1 and range2.
parse_literal(region_literal, contig_map=None) | Parses a Range from a string representation like chr:start-end.
parse_literals(region_literals, contig_map=None) | Parses each literal of region_literals in order.
position_overlaps(chrom, pos, interval) | Returns True iff the position chr:pos overlaps the interval.
ranges_overlap(i1, i2) | Returns True iff ranges i1 and i2 overlap.
sorted_ranges(ranges, contigs=None) | Sorts ranges by reference_name, start, and end.
span(regions) | Returns a region that spans all of the bases in regions.
to_literal(range_pb) | Converts Range protobuf into string literal form.



Classes


RangeSet

Fast overlap detection of a genomic position against a database of Ranges.

Enables O(log n) computation of whether a point chr:pos falls within one of a
large number of genomic ranges.

This class does not supports overlapping or adjacent intervals. Any such
intervals will be automatically merged together in the constructor.

This class is immutable. No methods should be added that directly modify the
ranges held by the class.






Methods:

[bookmark: __init__]


__init__(self, ranges=None, contigs=None, quiet=False)

Creates a RangeSet backed by ranges.

Note that the Range objects in ranges are *not* stored directly here, so
they can safely be modified after they are passed to this RangeSet.

Args:
  ranges: list(nucleus.genomics.v1.Range) protos (or anything with
    reference_name, start, and end properties following the Range
    convention). If None, no ranges will be used, and overlaps() will always
    return False.
  contigs: list(nucleus.genomics.v1.ContigInfo) protos. Used to define the
    iteration order over contigs (i.e., by contig.pos_in_fasta).  If this
    list is not provided, the iteration order will be determined by the
    alphabetical order of the contig names.
  quiet: bool; defaults to False: If False, we will emit a logging message
    every _LOG_EVERY_N_RANGES_IN_RANGESET_INIT records processed while
    building this intervaltree. Set to True to stop all of the logging.

Raises:
  ValueError: if any range's reference_name does not correspond to any
    contig in `contigs`.





[bookmark: envelops]



envelops(self, chrom, start, end)

Returns True iff some range in this RangeSet envelops the range.

Args:
  chrom: str. The chromosome of interest.
  start: int. Zero-based inclusive index of the query range.
  end: int: Zero-based exclusive index of the query range.

Returns:
  True if and only if some range in `self` completely spans the query
  range.





[bookmark: exclude_regions]



exclude_regions(self, other)

Chops out all of the intervals in other from this this RangeSet.

NOTE: This is a *MUTATING* operation for performance reasons. Make a copy
of self if you want to avoid modifying the RangeSet.

Args:
  other: A RangeSet object whose intervals will be removed from this
    RangeSet.





[bookmark: from_bed]



from_bed(cls, source, contigs=None)

Creates a RangeSet containing the intervals from source.

Args:
  source: A path to a BED (or equivalent) file of intervals.
  contigs: An optional list of ContigInfo proto, used by RangeSet
    constructor.

Returns:
  A RangeSet.





[bookmark: from_contigs]



from_contigs(cls, contigs)

Creates a RangeSet with an interval covering each base of each contig.





[bookmark: from_regions]



from_regions(cls, regions, contig_map=None)

Parses a command-line style literal regions flag into a RangeSet.

Args:
  regions: An iterable or None. If not None, regions will be parsed with
    ranges.from_regions.
  contig_map: An optional dictionary mapping from contig names to ContigInfo
    protobufs. If provided, allows literals of the format "contig_name",
    which will be parsed into a Range with reference_name=contig_name,
    start=0, end=n_bases where n_bases comes from the ContigInfo;
    additionally the sort order of the RangeSet will be determined by
    contig.pos_in_fasta.

Returns:
  A RangeSet object.





[bookmark: intersection]



intersection(self, *others)

Computes the intersection among this RangeSet and *others RangeSets.

This function computes the intersection of all of the intervals in self and
*others, returning a RangeSet containing only intervals common to all. The
intersection here is an ranged intersection, not an identity intersection,
so the resulting set of intervals may not contain any of the original
intervals in any of the sets.

To be concrete, suppose we have three sets to intersect, each having two
intervals:

  self   : chr1:1-10, chr2:20-30
  other1 : chr1:5-8, chr3:10-40
  other2 : chr1:3-7, chr3:10-30

self.intersection(other1, other2) produces a RangeSet with one interval
chr1:5-7, the common bases on chr1 in self, other1, and other2. No intervals
on chr2 or chr3 are included since the chr2 only occurs in self and the two
intervals on chr3, despite having some shared bases, don't have an
overlapping interval in self.

Args:
  *others: A list of RangeSet objects to intersect with the intervals in
    this RangeSet.

Returns:
  A RangeSet. If *others is empty, this function returns self rather than
  making an unnecessary copy. In all other cases, the returned value will be
  a freshly allocated RangeSet.





[bookmark: overlaps]



overlaps(self, chrom, pos)

Returns True if chr:pos overlaps with any range in this RangeSet.

Uses a fast bisection algorithm to determine the overlap in O(log n) time.

Args:
  chrom: str. The chromosome name.
  pos: int. The position (0-based).

Returns:
  True if chr:pos overlaps with a range.





[bookmark: partition]



partition(self, max_size)

Splits our intervals so that none are larger than max_size.

Slices up the intervals in this RangeSet into a equivalent set of intervals
(i.e., spanning the same set of bases), each of which is at most max_size in
length.

This function does not modify this RangeSet.

Because RangeSet merges adjacent intervals, this function cannot use a
RangeSet to represent the partitioned intervals and so instead generates
these intervals via a yield statement.

Args:
  max_size: int > 0. The maximum size of any interval.

Yields:
  nucleus.genomics.v1.Range protos, in sorted order (see comment about order
  in __iter__).

Raises:
  ValueError: if max_size <= 0.





[bookmark: variant_overlaps]



variant_overlaps(self, variant, empty_set_return_value=True)

Returns True if the variant's range overlaps with any in this set.










Functions

[bookmark: as_tuple]


as_tuple(range_)

Returns a Python tuple (reference_name, start, end).





[bookmark: bed_parser]



bed_parser(filename)

Parses Range objects from a BED-formatted file object.

See http://bedtools.readthedocs.org/en/latest/content/general-usage.html
for more information on the BED format.

Args:
  filename: file name of a BED-formatted file.

Yields:
  nucleus.genomics.v1.Range protobuf objects.





[bookmark: bedpe_parser]



bedpe_parser(filename)

Parses Range objects from a BEDPE-formatted file object.

See http://bedtools.readthedocs.org/en/latest/content/general-usage.html
for more information on the BEDPE format.

Skips events that span across chromosomes. For example, if the starting
location is on chr1 and the ending location is on chr2, that record will
not appear in the output.

Args:
  filename: file name of a BEDPE-formatted file.

Yields:
  nucleus.genomics.v1.Range protobuf objects.





[bookmark: contigs_dict]



contigs_dict(contigs)

Creates a dictionary for contigs.

Args:
  contigs: Iterable of ContigInfo protos.

Returns:
  A dictionary mapping contig.name: contig for each contig in contigs.





[bookmark: contigs_n_bases]



contigs_n_bases(contigs)

Returns the sum of all n_bases of contigs.





[bookmark: expand]



expand(region, n_bp, contig_map=None)

Expands region by n_bp in both directions.

Takes a Range(chrom, start, stop) and returns a new
Range(chrom, new_start, new_stop), where:

-- new_start is max(start - n_bp, 0)
-- new_stop is stop + n_bp if contig_map is None, or min(stop + n_bp, max_bp)
   where max_bp is contig_map[chrom].n_bp.

Args:
  region: A nucleus.genomics.v1.Range proto.
  n_bp: int >= 0. how many basepairs to increase region by.
  contig_map: dict[string, ContigInfo] or None. If not None, used to get the
    maximum extent to increase stop by. Must have region.reference_name as a
    key.

Returns:
  nucleus.genomics.v1.Range proto.

Raises:
  ValueError: if n_bp is invalid.
  KeyError: contig_map is not None and region.reference_name isn't a key.





[bookmark: find_max_overlapping]



find_max_overlapping(query_range, search_ranges)

Gets the index of the element in search_ranges with max overlap with query.

In case of ties, selects the lowest index range in search_ranges.

Args:
  query_range: nucleus.genomics.v1.Range, read genomic range.
  search_ranges: list[nucleus.genomics.v1.Read]. The list of regions we want
    to search for the maximal overlap with query_range. NOTE: this must be a
    list (not a generator) as we loop over the search_ranges multiple times.

Returns:
  int, the search_ranges index with the maximum read overlap. Returns None
  when read has no overlap with any of the search_ranges or search_ranges is
  empty.





[bookmark: from_regions]



from_regions(regions, contig_map=None)

Parses each region of `regions` into a Range proto.

This function provides a super high-level interface for
reading/parsing/converting objects into Range protos. Each `region` of
`regions` is processed in turn, yielding one or more Range protos. This
function inspects the contents of `region` to determine how to convert it to
Range(s) protos. The following types of `region` strings are supported:

  * If region ends with an extension known in _get_parser_for_file, we treat
    region as a file and read the Range protos from it with the corresponding
    reader from _get_parser_for_file, yielding each Range from the file in
    order.
  * Otherwise we parse region as a region literal (`chr20:1-10`) and return
    the Range proto.

Args:
  regions: iterable[str]. Converts each element of this iterable into
    region(s).
  contig_map: An optional dictionary mapping from contig names to ContigInfo
    protobufs. If provided, allows literals of the format "contig_name",
    which will be parsed into a Range with reference_name=contig_name,
    start=0, end=n_bases where n_bases comes from the ContigInfo.

Yields:
  A Range proto.





[bookmark: length]



length(region)

Returns the length in basepairs of region.





[bookmark: make_position]



make_position(chrom, position, reverse_strand=False)

Returns a nucleus.genomics.v1.Position.

Args:
  chrom: str. The chromosome name.
  position: int. The start position (0-based, inclusive).
  reverse_strand: bool. If True, indicates the position is on the negative
    strand.





[bookmark: make_range]



make_range(chrom, start, end)

Returns a nucleus.genomics.v1.Range.

Args:
  chrom: str. The chromosome name.
  start: int. The start position (0-based, inclusive) of this range.
  end: int. The end position (0-based, exclusive) of this range.

Returns:
  A nucleus.genomics.v1.Range.





[bookmark: overlap_len]



overlap_len(range1, range2)

Computes the number of overlapping bases of range1 and range2.

Args:
  range1: nucleus.genomics.v1.Range.
  range2: nucleus.genomics.v1.Range.

Returns:
  int. The number of basepairs in common. 0 if the ranges are not on the same
  contig.





[bookmark: parse_literal]



parse_literal(region_literal, contig_map=None)

Parses a Range from a string representation like chr:start-end.

The region literal must conform to the following pattern:

  chromosome:start-end
  chromosome:position
  chromosome  [if contig_map is provided]

chromosome can be any non-empty string without whitespace. start and end must
both be positive integers. They can contain commas for readability. start and
end are positions not offsets, so start == 1 means an offset of zero. If only
a single position is provided, this creates a 1 bp interval starting at
position - 1 and ending at position.

Inspired by the samtools region specification:
http://www.htslib.org/doc/samtools.html

Args:
  region_literal: str. The literal to parse.
  contig_map: An optional dictionary mapping from contig names to ContigInfo
    protobufs. If provided, allows literals of the format "contig_name", which
    will be parsed into a Range with reference_name=contig_name, start=0,
    end=n_bases where n_bases comes from the ContigInfo.

Returns:
  nucleus.genomics.v1.Range.

Raises:
  ValueError: if region_literal cannot be parsed.





[bookmark: parse_literals]



parse_literals(region_literals, contig_map=None)

Parses each literal of region_literals in order.





[bookmark: position_overlaps]



position_overlaps(chrom, pos, interval)

Returns True iff the position chr:pos overlaps the interval.

Args:
  chrom: str. The chromosome name.
  pos: int. The position (0-based, inclusive).
  interval: nucleus.genomics.v1.Range object.

Returns:
  True if interval overlaps chr:pos.





[bookmark: ranges_overlap]



ranges_overlap(i1, i2)

Returns True iff ranges i1 and i2 overlap.

Args:
  i1: nucleus.genomics.v1.Range object.
  i2: nucleus.genomics.v1.Range object.

Returns:
  True if and only if i1 and i2 overlap.





[bookmark: sorted_ranges]



sorted_ranges(ranges, contigs=None)

Sorts ranges by reference_name, start, and end.

Args:
  ranges: Iterable of nucleus.genomics.v1.Range protos that we want to sort.
  contigs: None or an iterable of ContigInfo protos. If not None, we will use
    the order of the contigs (as defined by their pos_in_fasta field values)
    to sort the Ranges on different contigs with respect to each other.

Returns:
  A newly allocated list of nucleus.genomics.v1.Range protos.





[bookmark: span]



span(regions)

Returns a region that spans all of the bases in regions.

This function returns a Range(chrom, start, stop), where start is the min
of the starts in regions, and stop is the max end in regions. It may not be
freshly allocated.

Args:
  regions: list[Range]: a list of Range protos.

Returns:
  A single Range proto.

Raises:
  ValueError: if not all regions have the same reference_name.
  ValueError: if regions is empty.





[bookmark: to_literal]



to_literal(range_pb)

Converts Range protobuf into string literal form.

The string literal form looks like:

  reference_name:start+1-end

since start and end are zero-based inclusive (start) and exclusive (end),
while the literal form is one-based inclusive on both ends.

Args:
  range_pb: A nucleus.genomics.v1.Range object.

Returns:
  A string representation of the Range.










          

      

      

    

  

  
    

    nucleus.util.sequence_utils – Utility functions for manipulating DNA sequences.
    

    
 
  

    
      
          
            
  
nucleus.util.sequence_utils – Utility functions for manipulating DNA sequences.

Source code: nucleus/util/sequence_utils.py [https://github.com/google/nucleus/tree/master/nucleus/util/sequence_utils.py]

Documentation index: doc_index.md




Classes overview

Name | Description
—–|————
Error | Base error class.



Functions overview

Name | Description
—–|————
reverse_complement(sequence, complement_dict=None) | Returns the reverse complement of a DNA sequence.



Classes


Error

Base error class.








Functions

[bookmark: reverse_complement]


reverse_complement(sequence, complement_dict=None)

Returns the reverse complement of a DNA sequence.

By default this will successfully reverse complement sequences comprised
solely of A, C, G, and T letters. Other complement dictionaries can be
passed in for more permissive matching.

Args:
  sequence: str. The input sequence to reverse complement.
  complement_dict: dict[str, str]. The lookup dictionary holding the
    complement base pairs.

Returns:
  The reverse complement DNA sequence.

Raises:
  Error: The sequence contains letters not present in complement_dict.










          

      

      

    

  

  
    

    nucleus.util.struct_utils – Struct proto utilities.
    

    
 
  

    
      
          
            
  
nucleus.util.struct_utils – Struct proto utilities.

Source code: nucleus/util/struct_utils.py [https://github.com/google/nucleus/tree/master/nucleus/util/struct_utils.py]

Documentation index: doc_index.md



This class provides wrappers for conveniently interacting with protos defined
in struct.proto, mostly ListValue and Value objects. It should primarily be used
by variant_utils and variantcallutils rather than being used directly.


Functions overview

Name | Description
—–|————
add_bool_field(field_map, field_name, value) | Appends the given boolean value(s) to field_map[field_name].
add_int_field(field_map, field_name, value) | Appends the given int value(s) to field_map[field_name].
add_number_field(field_map, field_name, value) | Appends the given number value(s) to field_map[field_name].
add_string_field(field_map, field_name, value) | Appends the given string value(s) to field_map[field_name].
get_bool_field(field_map, field_name, is_single_field=False) | Returns the bool value(s) stored in field_map[field_name].
get_int_field(field_map, field_name, is_single_field=False) | Returns the int value(s) stored in field_map[field_name].
get_number_field(field_map, field_name, is_single_field=False) | Returns the number value(s) stored in field_map[field_name].
get_string_field(field_map, field_name, is_single_field=False) | Returns the string value(s) stored in field_map[field_name].
set_bool_field(field_map, field_name, value) | Sets field_map[field_name] with the given boolean value(s).
set_int_field(field_map, field_name, value) | Sets field_map[field_name] with the given int value(s).
set_number_field(field_map, field_name, value) | Sets field_map[field_name] with the given number value(s).
set_string_field(field_map, field_name, value) | Sets field_map[field_name] with the given string value(s).



Functions

[bookmark: add_bool_field]


add_bool_field(field_map, field_name, value)

Appends the given boolean value(s) to field_map[field_name].

Args:
  field_map: Map(str --> ListValue) to modify.
  field_name: str. The name of the field to append value to.
  value: The boolean value(s) to append to the field. This can be a single
    boolean or a list of booleans.





[bookmark: add_int_field]



add_int_field(field_map, field_name, value)

Appends the given int value(s) to field_map[field_name].

Args:
  field_map: Map(str --> ListValue) to modify.
  field_name: str. The name of the field to append value to.
  value: The int value(s) to append to the field. This can be a single
    int or a list of ints.





[bookmark: add_number_field]



add_number_field(field_map, field_name, value)

Appends the given number value(s) to field_map[field_name].

Args:
  field_map: Map(str --> ListValue) to modify.
  field_name: str. The name of the field to append value to.
  value: The number value(s) to append to the field. This can be a single
    number or a list of numbers.





[bookmark: add_string_field]



add_string_field(field_map, field_name, value)

Appends the given string value(s) to field_map[field_name].

Args:
  field_map: Map(str --> ListValue) to modify.
  field_name: str. The name of the field to append value to.
  value: The string value(s) to append to the field. This can be a single
    string or a list of strings.





[bookmark: get_bool_field]



get_bool_field(field_map, field_name, is_single_field=False)

Returns the bool value(s) stored in `field_map[field_name]`.

If the field_name is not present in field_map, the empty list is returned.

Args:
  field_map: Map(str --> ListValue) of interest.
  field_name: str. The name of the field to extract bool values from.
  is_single_field: bool. If True, return the first bool value stored (it
    should be the only one in the field). Otherwise, return the list of
    bools.

Returns:
  The bool value(s) stored in the field_map under this field_name.





[bookmark: get_int_field]



get_int_field(field_map, field_name, is_single_field=False)

Returns the int value(s) stored in `field_map[field_name]`.

If the field_name is not present in field_map, the empty list is returned.

Args:
  field_map: Map(str --> ListValue) of interest.
  field_name: str. The name of the field to extract int values from.
  is_single_field: bool. If True, return the first int value stored (it
    should be the only one in the field). Otherwise, return the list of
    ints.

Returns:
  The int value(s) stored in the field_map under this field_name.





[bookmark: get_number_field]



get_number_field(field_map, field_name, is_single_field=False)

Returns the number value(s) stored in `field_map[field_name]`.

If the field_name is not present in field_map, the empty list is returned.

Args:
  field_map: Map(str --> ListValue) of interest.
  field_name: str. The name of the field to extract number values from.
  is_single_field: bool. If True, return the first number value stored (it
    should be the only one in the field). Otherwise, return the list of
    numbers.

Returns:
  The number value(s) stored in the field_map under this field_name.





[bookmark: get_string_field]



get_string_field(field_map, field_name, is_single_field=False)

Returns the string value(s) stored in `field_map[field_name]`.

If the field_name is not present in field_map, the empty list is returned.

Args:
  field_map: Map(str --> ListValue) of interest.
  field_name: str. The name of the field to extract string values from.
  is_single_field: bool. If True, return the first string value stored (it
    should be the only one in the field). Otherwise, return the list of
    strings.

Returns:
  The string value(s) stored in the field_map under this field_name.





[bookmark: set_bool_field]



set_bool_field(field_map, field_name, value)

Sets field_map[field_name] with the given boolean value(s).

Args:
  field_map: Map(str --> ListValue) to modify.
  field_name: str. The name of the field to set.
  value: The boolean value(s) to set the field to. This can be a single
    boolean or a list of booleans.





[bookmark: set_int_field]



set_int_field(field_map, field_name, value)

Sets field_map[field_name] with the given int value(s).

Args:
  field_map: Map(str --> ListValue) to modify.
  field_name: str. The name of the field to set.
  value: The int value(s) to set the field to. This can be a single int
    or a list of ints.





[bookmark: set_number_field]



set_number_field(field_map, field_name, value)

Sets field_map[field_name] with the given number value(s).

Args:
  field_map: Map(str --> ListValue) to modify.
  field_name: str. The name of the field to set.
  value: The number value(s) to set the field to. This can be a single number
    or a list of numbers.





[bookmark: set_string_field]



set_string_field(field_map, field_name, value)

Sets field_map[field_name] with the given string value(s).

Args:
  field_map: Map(str --> ListValue) to modify.
  field_name: str. The name of the field to set.
  value: The int value(s) to set the field to. This can be a single string or
    a list of strings.










          

      

      

    

  

  
    

    nucleus.util.utils – Utility functions for working with reads.
    

    
 
  

    
      
          
            
  
nucleus.util.utils – Utility functions for working with reads.

Source code: nucleus/util/utils.py [https://github.com/google/nucleus/tree/master/nucleus/util/utils.py]

Documentation index: doc_index.md




Functions overview

Name | Description
—–|————
read_end(read) | Returns the read start + alignment length for Read read.
read_overlaps_region(read, region) | Returns True if read overlaps read.
read_range(read) | Creates a Range proto from the alignment of Read.
reservoir_sample(iterable, k, random=None) | Samples k elements with uniform probability from an iterable.



Functions

[bookmark: read_end]


read_end(read)

Returns the read start + alignment length for Read read.





[bookmark: read_overlaps_region]



read_overlaps_region(read, region)

Returns True if read overlaps read.

This function is equivalent to calling:

  `ranges.ranges_overlap(region, read_range(read))`

But is optimized for speed and memory performance in C++.

Args:
  read: nucleus.genomics.v1.Read.
  region: nucleus.genomics.v1.Range.

Returns:
  True if read and region overlap (i.e, have the same reference_name and their
  start/ends overlap at least one basepair).





[bookmark: read_range]



read_range(read)

Creates a Range proto from the alignment of Read.

Args:
  read: nucleus.genomics.v1.Read. The read to calculate the range for.

Returns:
  A nucleus.genomics.v1.Range for read.





[bookmark: reservoir_sample]



reservoir_sample(iterable, k, random=None)

Samples k elements with uniform probability from an iterable.

Selects a subset of k elements from n input elements with uniform probability
without needing to hold all n elements in memory at the same time. This
implementation has max space complexity O(min(k, n)), i.e., we allocate up to
min(k, n) elements to store the samples. This means that we only use ~n
elements when n is smaller than k, which can be important when k is large. If
n elements are added to this sampler, and n <= k, all n elements will be
retained. If n > k, each added element will be retained with a uniform
probability of k / n.

The order of the k retained samples from our n elements is undefined. In
particular that means that the elements in the returned list can occur in a
different order than they appeared in the iterable.

More details about reservoir sampling (and the specific algorithm used here
called Algorithm R) can be found on wikipedia:

https://en.wikipedia.org/wiki/Reservoir_sampling#Algorithm_R

Args:
  iterable: Python iterable. The iterable to sample from.
  k: int. The number of elements to sample.
  random: A random number generator or None.

Returns:
  A list containing the k sampled elements.

Raises:
  ValueError: If k is negative.










          

      

      

    

  

  
    

    nucleus.util.variant_utils – Variant utilities.
    

    
 
  

    
      
          
            
  
nucleus.util.variant_utils – Variant utilities.

Source code: nucleus/util/variant_utils.py [https://github.com/google/nucleus/tree/master/nucleus/util/variant_utils.py]

Documentation index: doc_index.md




Classes overview

Name | Description
—–|————
AlleleMismatchType | An enumeration of the types of allele mismatches we detect.
GenotypeType | An enumeration of the types of genotypes.
VariantType | An enumeration of the types of variants.



Functions overview

Name | Description
—–|————
allele_indices_for_genotype_likelihood_index(gl_index, ploidy=2) | Returns a tuple of allele_indices corresponding to the given GL index.
allele_indices_with_num_alts(variant, num_alts, ploidy=2) | Returns a list of allele indices configurations with num_alts alternates.
allele_mismatches(evalv, truev) | Determines the set of allele mismatch discordances between evalv and truev.
calc_ac(variant) | Returns a list of alt counts based on variant.calls.
calc_an(variant) | Returns the total number of alleles in called genotypes in variant.
decode_variants(encoded_iter) | Yields a genomics.Variant from encoded_iter.
format_alleles(variant) | Gets a string representation of the variant’s alleles.
format_filters(variant) | Returns a human-readable string showing the filters applied to variant.
format_position(variant) | Gets a string representation of the variant’s position.
genotype_as_alleles(variant, call_ix=0) | Gets genotype of the sample in variant as a list of actual alleles.
genotype_likelihood(variant_call, allele_indices) | Returns the genotype likelihood for the given allele indices.
genotype_likelihood_index(allele_indices) | Returns the genotype likelihood index for the given allele indices.
genotype_ordering_in_likelihoods(variant) | Yields (i, j, allele_i, allele_j) for the genotypes ordering in GLs.
genotype_type(variant) | Gets the GenotypeType for variant.
get_info(variant, field_name, vcf_object=None) | Returns the value of the field_name INFO field.
has_calls(variant) | Does variant have any genotype calls?
has_deletion(variant) | Does variant have a deletion?
has_insertion(variant) | Does variant have an insertion?
is_biallelic(variant, exclude_alleles=None) | Returns True if variant has exactly one alternate allele.
is_deletion(ref, alt) | Is alt a deletion w.r.t. ref?
is_filtered(variant) | Returns True if variant has a non-PASS filter field, or False otherwise.
is_gvcf(variant) | Returns true if variant encodes a standard gVCF reference block.
is_indel(variant, exclude_alleles=None) | Is variant an indel?
is_insertion(ref, alt) | Is alt an insertion w.r.t. ref?
is_multiallelic(variant, exclude_alleles=None) | Does variant have multiple alt alleles?
is_ref(variant, exclude_alleles=None) | Returns true if variant is a reference record.
is_singleton(variant) | Returns True iff the variant has exactly one non-ref VariantCall.
is_snp(variant, exclude_alleles=None) | Is variant a SNP?
is_transition(allele1, allele2) | Is the pair of single bp alleles a transition?
is_variant_call(variant, require_non_ref_genotype=True, no_calls_are_variant=False, call_indices=None, apply_filter=True) | Is variant a non-reference call?
major_allele_frequency(variant) | Returns the frequency of the most common allele in the variant.
only_call(variant) | Ensures the Variant has exactly one VariantCall, and returns it.
set_info(variant, field_name, value, vcf_object=None) | Sets a field of the info map of the Variant to the given value(s).
simplify_alleles(*alleles) | Simplifies alleles by stripping off common postfix bases.
simplify_variant_alleles(variant) | Replaces the alleles in variants with their simplified versions.
sorted_variants(variants) | Returns sorted(variants, key=variant_range_tuple).
unphase_all_genotypes(variant) | Sorts genotype and removes phasing bit of all calls in variant.
variant_is_deletion(variant, exclude_alleles=None) | Are all the variant’s alt alleles deletions?
variant_is_insertion(variant, exclude_alleles=None) | Are all the variant’s alt alleles insertions?
variant_key(variant, sort_alleles=True) | Gets a human-readable string key that is almost unique for Variant.
variant_position(variant) | Returns a new Range at the start position of variant.
variant_range(variant) | Returns a new Range covering variant.
variant_range_tuple(variant) | Returns a new tuple of (reference_name, start, end) for the variant.
variant_type(variant) | Gets the VariantType of variant.
variants_are_sorted(variants) | Returns True if variants are sorted w.r.t. variant_range.
variants_overlap(variant1, variant2) | Returns True if the range of variant1 and variant2 overlap.



Classes


AlleleMismatchType

An enumeration of the types of allele mismatches we detect.







GenotypeType

An enumeration of the types of genotypes.






Methods:

[bookmark: __init__]


__init__(self, full_name, example_gt, class_id)

Create a GenotypeType with the given name, GT and class_id.









VariantType

An enumeration of the types of variants.








Functions

[bookmark: allele_indices_for_genotype_likelihood_index]


allele_indices_for_genotype_likelihood_index(gl_index, ploidy=2)

Returns a tuple of allele_indices corresponding to the given GL index.

This is the inverse function to `genotype_likelihood_index`.

Args:
  gl_index: int. The index within a genotype likelihood array for which to
    determine the associated alleles.
  ploidy: int. The ploidy of the result.

Returns:
  A tuple of `ploidy` ints representing the allele indices at this GL index.

Raises:
  NotImplementedError: The requested allele indices are more than diploid.





[bookmark: allele_indices_with_num_alts]



allele_indices_with_num_alts(variant, num_alts, ploidy=2)

Returns a list of allele indices configurations with `num_alts` alternates.

Args:
  variant: nucleus.genomics.v1.Variant. The variant of interest, which
    defines the candidate alternate alleles that can be used to generate
    allele indices configurations.
  num_alts: int in [0, `ploidy`]. The number of non-reference alleles for
    which to create the allele indices configurations.
  ploidy: int. The ploidy for which to return allele indices configurations.

Returns: A list of tuples. Each tuple is of length `ploidy` and represents the
  allele indices of all `ploidy` genotypes that contain `num_alts`
  non-reference alleles.

Raises:
  ValueError: The domain of `num_alts` is invalid.
  NotImplementedError: `ploidy` is not diploid.





[bookmark: allele_mismatches]



allele_mismatches(evalv, truev)

Determines the set of allele mismatch discordances between evalv and truev.

Compares the alleles present in evalv and truev to determine if there are any
disagreements between the set of called alleles in the two Variant protos. The
type of differences basically boil down to:

-- Are there duplicate alt alleles?
-- Can we find a matching allele in the truev for each allele in evalv, and
  vice versa?

Two alleles A and B match when they would produce the same sequence of bases
in ref and alt haplotypes starting at the same position. So CA=>TA is the same
as C=>T (position is the same, replacing A by A is a noop) but AC=>AT isn't
the same as C=>T because the former event changes bases 1 bp further along in
the reference genome than the C=>T allele.

Args:
  evalv: A nucleus.genomics.v1.Variant.
  truev: A nucleus.genomics.v1.Variant.

Returns:
  A set of AlleleMismatchType values.





[bookmark: calc_ac]



calc_ac(variant)

Returns a list of alt counts based on variant.calls.





[bookmark: calc_an]



calc_an(variant)

Returns the total number of alleles in called genotypes in variant.





[bookmark: decode_variants]



decode_variants(encoded_iter)

Yields a genomics.Variant from encoded_iter.

Args:
  encoded_iter: An iterable that produces binary encoded
    nucleus.genomics.v1.Variant strings.

Yields:
  A parsed nucleus.genomics.v1.Variant for each encoded element of
  encoded_iter in order.





[bookmark: format_alleles]



format_alleles(variant)

Gets a string representation of the variant's alleles.

Args:
  variant: nucleus.genomics.v1.Variant.

Returns:
  A string ref_bases/alt1,alt2 etc.





[bookmark: format_filters]



format_filters(variant)

Returns a human-readable string showing the filters applied to variant.

Returns a string with the filter field values of variant separated by commas.
If the filter field isn't set, returns vcf_constants.MISSING_FIELD ('.').

Args:
  variant: nucleus.genomics.v1.Variant.

Returns:
  A string.





[bookmark: format_position]



format_position(variant)

Gets a string representation of the variant's position.

Args:
  variant: nucleus.genomics.v1.Variant.

Returns:
  A string chr:start + 1 (as start is zero-based).





[bookmark: genotype_as_alleles]



genotype_as_alleles(variant, call_ix=0)

Gets genotype of the sample in variant as a list of actual alleles.

Returns the alleles specified by the genotype indices of variant.calls[0].
For example, if variant.reference_bases = 'A' and variant.alternative_bases
= ['C'] and the genotypes are [0, 1], this function will return
['A', 'C'].

Args:
  variant: nucleus.genomics.v1.Variant.
  call_ix: int. The index into the calls attribute indicating which
    VariantCall to return alleles for.

Returns:
  A list of allele (string) from variant, one for each genotype in
  variant.calls[call_ix], in order.

Raises:
  ValueError: If variant doesn't have a call at the specified index.





[bookmark: genotype_likelihood]



genotype_likelihood(variant_call, allele_indices)

Returns the genotype likelihood for the given allele indices.

Args:
  variant_call: nucleus.genomics.v1.VariantCall. The VariantCall from
    which to extract the genotype likelihood of the allele indices.
  allele_indices: list(int). The list of allele indices for a given genotype.
    E.g. diploid heterozygous alternate can be represented as [0, 1].

Returns:
  The float value of the genotype likelihood of this set of alleles.





[bookmark: genotype_likelihood_index]



genotype_likelihood_index(allele_indices)

Returns the genotype likelihood index for the given allele indices.

Args:
  allele_indices: list(int). The list of allele indices for a given genotype.
    E.g. diploid homozygous reference is represented as [0, 0].

Returns:
  The index into the associated genotype likelihood array corresponding to
  the likelihood of this list of alleles.

Raises:
  NotImplementedError: The allele_indices are more than diploid.





[bookmark: genotype_ordering_in_likelihoods]



genotype_ordering_in_likelihoods(variant)

Yields (i, j, allele_i, allele_j) for the genotypes ordering in GLs.

https://samtools.github.io/hts-specs/VCFv4.1.pdf
"If A is the allele in REF and B,C,... are the alleles as ordered in ALT,
the ordering of genotypes for the likelihoods is given by:
F(j/k) = (k*(k+1)/2)+j. In other words, for biallelic sites the ordering is:
AA,AB,BB; for triallelic sites the ordering is: AA,AB,BB,AC,BC,CC, etc."
The biallelic sites in our case are 0/0, 0/1, 1/1.
The triallelic sites are 0/0, 0/1, 1/1, 0/2, 1/2, 2/2.
This wiki page has more information that generalizes ot different ploidy.
http://genome.sph.umich.edu/wiki/Relationship_between_Ploidy,_Alleles_and_Genotypes

Currently this function only implements for diploid cases.

Args:
  variant: nucleus.genomics.v1.Variant.

Yields:
  allele indices and strings (i, j, allele_i, allele_j) in the correct order.





[bookmark: genotype_type]



genotype_type(variant)

Gets the GenotypeType for variant.

If variant doesn't have genotypes, returns no_call. Otherwise
returns one of no_call, hom_ref, het, or hom_var depending on the
status of the genotypes in the call field of variant.

Args:
  variant: nucleus.genomics.v1.Variant.

Returns:
  A GenotypeType.

Raises:
  ValueError: If variant has more than one call (i.e., is multi-sample).





[bookmark: get_info]



get_info(variant, field_name, vcf_object=None)

Returns the value of the `field_name` INFO field.

The `vcf_object` is used to determine the type of the resulting value. If it
is a single value or a Flag, that single value will be returned. Otherwise,
the list of values is returned.

Args:
  variant: Variant proto. The Variant of interest.
  field_name: str. The name of the field to retrieve values from.
  vcf_object: (Optional) A VcfReader or VcfWriter object. If not None, the
    type of the field is inferred from the associated VcfReader or VcfWriter
    based on its name. Otherwise, the type is inferred if it is a reserved
    field.





[bookmark: has_calls]



has_calls(variant)

Does variant have any genotype calls?

Args:
  variant: nucleus.genomics.v1.Variant.

Returns:
  True if variant has one or more VariantCalls.





[bookmark: has_deletion]



has_deletion(variant)

Does variant have a deletion?

Args:
  variant: nucleus.genomics.v1.Variant.

Returns:
  True if the alleles in variant indicate an deletion event
  occurs at this site.





[bookmark: has_insertion]



has_insertion(variant)

Does variant have an insertion?

Args:
  variant: nucleus.genomics.v1.Variant.

Returns:
  True if the alleles in variant indicate an insertion event
  occurs at this site.





[bookmark: is_biallelic]



is_biallelic(variant, exclude_alleles=None)

Returns True if variant has exactly one alternate allele.

Args:
  variant: nucleus.genomics.v1.Variant.
  exclude_alleles: list(str). The alleles in this list will be ignored.

Returns:
  True if the variant has exactly one alternate allele.





[bookmark: is_deletion]



is_deletion(ref, alt)

Is alt a deletion w.r.t. ref?

Args:
  ref: A string of the reference allele.
  alt: A string of the alternative allele.

Returns:
  True if alt is a deletion w.r.t. ref.





[bookmark: is_filtered]



is_filtered(variant)

Returns True if variant has a non-PASS filter field, or False otherwise.





[bookmark: is_gvcf]



is_gvcf(variant)

Returns true if variant encodes a standard gVCF reference block.

This means in practice that variant has a single alternate allele that is the
canonical gVCF allele vcf_constants.GVCF_ALT_ALLELE.

Args:
  variant: nucleus.genomics.v1.Variant.

Returns:
  Boolean. True if variant is a gVCF record, False otherwise.





[bookmark: is_indel]



is_indel(variant, exclude_alleles=None)

Is variant an indel?

An indel event is simply one where the size of at least one of the alleles
is > 1.

Args:
  variant: nucleus.genomics.v1.Variant.
  exclude_alleles: list(str). The alleles in this list will be ignored.

Returns:
  True if the alleles in variant indicate an insertion/deletion event
  occurs at this site.





[bookmark: is_insertion]



is_insertion(ref, alt)

Is alt an insertion w.r.t. ref?

Args:
  ref: A string of the reference allele.
  alt: A string of the alternative allele.

Returns:
  True if alt is an insertion w.r.t. ref.





[bookmark: is_multiallelic]



is_multiallelic(variant, exclude_alleles=None)

Does variant have multiple alt alleles?

Args:
  variant: nucleus.genomics.v1.Variant.
  exclude_alleles: list(str). The alleles in this list will be ignored.

Returns:
  True if variant has more than one alt allele.





[bookmark: is_ref]



is_ref(variant, exclude_alleles=None)

Returns true if variant is a reference record.

Variant protos can encode sites that aren't actually mutations in the
sample. For example, the record ref='A', alt='.' indicates that there is
no mutation present (i.e., alt is the missing value).

Args:
  variant: nucleus.genomics.v1.Variant.
  exclude_alleles: list(str). The alleles in this list will be ignored.

Returns:
  True if there are no actual alternate alleles.





[bookmark: is_singleton]



is_singleton(variant)

Returns True iff the variant has exactly one non-ref VariantCall.





[bookmark: is_snp]



is_snp(variant, exclude_alleles=None)

Is variant a SNP?

Args:
  variant: nucleus.genomics.v1.Variant.
  exclude_alleles: list(str). The alleles in this list will be ignored.

Returns:
  True if all alleles of variant are 1 bp in length.





[bookmark: is_transition]



is_transition(allele1, allele2)

Is the pair of single bp alleles a transition?

Args:
  allele1: A string of the first allele, must be 1 bp in length.
  allele2: A string of the second allele, must be 1 bp in length.

Returns:
  True if allele1/allele2 are a transition SNP.

Raises:
  ValueError: if allele1 and allele2 are equal or aren't 1 bp in length.





[bookmark: is_variant_call]



is_variant_call(variant, require_non_ref_genotype=True, no_calls_are_variant=False, call_indices=None, apply_filter=True)

Is variant a non-reference call?

A Variant proto doesn't always imply that there's a variant present in the
genome. The call may not have alternate bases, may be filtered, may a have
hom-ref genotype, etc. This function looks for all of those configurations
and returns true iff the variant is asserting that a mutation is present
in the same.

Note that this code allows a variant without a calls field to be variant,
but one with a genotype call must have a non-reference genotype to be
considered variant (if require_non_ref_genotype is True, the default). If
False, a variant that passes all of the site-level requirements for being
a variant_call will return a True value, regardless of the genotypes, which
means that we'll consider a site with a sample with a hom-ref or no-call site
a variant call.

Args:
  variant: nucleus.genomics.v1.Variant.
  require_non_ref_genotype: Should we require a site with a genotype call to
    have a non-reference (het, hom-var) genotype for the site to be considered
    a variant call?
  no_calls_are_variant: If a site has genotypes, should we consider no_call
    genotypes as being variant or not? e.g. -1/1 listed as ./. in VCF
  call_indices: A list of 0-based indices. If specified, only the calls
    at the given indices will be considered. The function will return
    True if any of those calls are variant.
  apply_filter: If set to True, will never treat this site as variant when
    any filter other than PASS or . is set.

Returns:
  True if variant is really a mutation call.





[bookmark: major_allele_frequency]



major_allele_frequency(variant)

Returns the frequency of the most common allele in the variant.





[bookmark: only_call]



only_call(variant)

Ensures the Variant has exactly one VariantCall, and returns it.

Args:
  variant: nucleus.genomics.v1.Variant. The variant of interest.

Returns:
  The single nucleus.genomics.v1.VariantCall in the variant.

Raises:
  ValueError: Not exactly one VariantCall is in the variant.





[bookmark: set_info]



set_info(variant, field_name, value, vcf_object=None)

Sets a field of the info map of the `Variant` to the given value(s).

`variant.info` is analogous to the INFO field of a VCF record.

Args:
  variant: Variant proto. The Variant to modify.
  field_name: str. The name of the field to set.
  value: A single value or list of values to update the Variant with. The type
    of the value is determined by the `vcf_object` if one is given, otherwise
    is looked up based on the reserved INFO fields in the VCF specification.
  vcf_object: (Optional) A VcfReader or VcfWriter object. If not None, the
    type of the field is inferred from the associated VcfReader or VcfWriter
    based on its name. Otherwise, the type is inferred if it is a reserved
    field.





[bookmark: simplify_alleles]



simplify_alleles(*alleles)

Simplifies alleles by stripping off common postfix bases.

For example, simplify("AC", "GC") would produce the tuple "A", "G" as the "C"
base is a common postfix of both alleles. But simplify("AC", "GT") would
produce "AC", "GT" as there is no common postfix.

Note this function will never simplify any allele down to the empty string. So
if alleles = ['CACA', 'CA'], the longest common postfix is 'CA' but we will
not produce ['CA', ''] as this is an invalid Variant allele encoding. Instead
we produce ['CAC', 'C'].

Args:
  *alleles: A tuple of bases, each as a string, to simplify.

Returns:
  A tuple, one for each allele in alleles in order, with any common postfix
  bases stripped off.





[bookmark: simplify_variant_alleles]



simplify_variant_alleles(variant)

Replaces the alleles in variants with their simplified versions.

This function takes a variant and replaces its ref and alt alleles with those
produced by a call to variant_utils.simplify_alleles() to remove common
postfix bases in the alleles that may be present due to pruning away alleles.

Args:
  variant: learning.genomics.genomics.Variant proto we want to simplify.

Returns:
  variant with its ref and alt alleles replaced with their simplified
    equivalents.





[bookmark: sorted_variants]



sorted_variants(variants)

Returns sorted(variants, key=variant_range_tuple).





[bookmark: unphase_all_genotypes]



unphase_all_genotypes(variant)

Sorts genotype and removes phasing bit of all calls in variant.

This mutation is done in place rather than returning a different copy.

Args:
  variant: nucleus.genomics.v1.Variant.

Returns:
  The variant with unphased calls.





[bookmark: variant_is_deletion]



variant_is_deletion(variant, exclude_alleles=None)

Are all the variant's alt alleles deletions?

Args:
  variant: nucleus.genomics.v1.Variant.
  exclude_alleles: list(str). The alleles in this list will be ignored.

Returns:
  True if variant has at least one alt allele and all alts are deletions.





[bookmark: variant_is_insertion]



variant_is_insertion(variant, exclude_alleles=None)

Are all the variant's alt alleles insertions?

Args:
  variant: nucleus.genomics.v1.Variant.
  exclude_alleles: list(str). The alleles in this list will be ignored.

Returns:
  True if variant has at least one alt allele and all alts are insertions.





[bookmark: variant_key]



variant_key(variant, sort_alleles=True)

Gets a human-readable string key that is almost unique for Variant.

Gets a string key that contains key information about the variant, formatted
as:

  reference_name:start+1:reference_bases->alternative_bases

where alternative bases is joined with a '/' for each entry in
alternative_bases. The start+1 is so we display the position, which starts at
1, and not the offset, which starts at 0.

For example, a Variant(reference_name='20', start=10, reference_bases='AC',
alternative_bases=['A', 'ACC']) would have a key of:

  20:11:AC->A/ACC

The key is 'almost unique' in that the reference_name + start + alleles should
generally occur once within a single VCF file, given the way the VCF
specification works.

Args:
  variant: nucleus.genomics.v1.Variant to make into a key.
  sort_alleles: bool. If True, the alternative_bases of variant will be sorted
    according to their lexicographic order. If False, the alternative_bases
    will be displayed in their order in the Variant.

Returns:
  A str.





[bookmark: variant_position]



variant_position(variant)

Returns a new Range at the start position of variant.

Args:
  variant: nucleus.genomics.v1.Variant.

Returns:
  A new Range with the same reference_name as variant and start but an end
  that is start + 1. This produces a range that is the single basepair of the
  start of variant, hence the name position.





[bookmark: variant_range]



variant_range(variant)

Returns a new Range covering variant.

Args:
  variant: nucleus.genomics.v1.Variant.

Returns:
  A new Range with the same reference_name, start, and end as variant.





[bookmark: variant_range_tuple]



variant_range_tuple(variant)

Returns a new tuple of (reference_name, start, end) for the variant.

A common use case for this function is to sort variants by chromosomal
location, with usage like `sorted(variants, key=variant_range_tuple)`.

Args:
  variant: nucleus.genomics.v1.Variant.

Returns:
  A three-tuple with the same reference_name, start, and end as variant.





[bookmark: variant_type]



variant_type(variant)

Gets the VariantType of variant.

Args:
  variant: nucleus.genomics.v1.Variant.

Returns:
  VariantType indicating the type of this variant.





[bookmark: variants_are_sorted]



variants_are_sorted(variants)

Returns True if variants are sorted w.r.t. variant_range.

Args:
  variants: list[nucleus.genomics.v1.Variant]. A list of Variant
    protos that may or may not be sorted.

Returns:
  True if variants are sorted, False otherwise.





[bookmark: variants_overlap]



variants_overlap(variant1, variant2)

Returns True if the range of variant1 and variant2 overlap.

This is equivalent to:

  ranges_overlap(variant_range(variant1), variant_range(variant2))

Args:
  variant1: nucleus.genomics.v1.Variant we want to compare for overlap.
  variant2: nucleus.genomics.v1.Variant we want to compare for overlap.

Returns:
  True if the variants overlap, False otherwise.










          

      

      

    

  

  
    

    nucleus.util.variantcall_utils – VariantCall utilities.
    

    
 
  

    
      
          
            
  
nucleus.util.variantcall_utils – VariantCall utilities.

Source code: nucleus/util/variantcall_utils.py [https://github.com/google/nucleus/tree/master/nucleus/util/variantcall_utils.py]

Documentation index: doc_index.md




Functions overview

Name | Description
—–|————
get_ad(variant_call) | Gets the allele depth of the VariantCall.
get_format(variant_call, field_name, vcf_object=None) | Returns the value of the field_name FORMAT field.
get_gl(variant_call) | Returns the genotype likelihoods of the VariantCall.
get_gq(variant_call) | Gets the genotype quality of the VariantCall.
get_gt(variant_call) | Returns the genotypes of the VariantCall.
get_med_dp(variant_call) | Gets the ‘MED_DP’ field of the VariantCall.
get_min_dp(variant_call) | Gets the ‘MIN_DP’ field of the VariantCall.
has_full_genotypes(variant_call) | Returns True iff the VariantCall has only known genotypes.
has_genotypes(variant_call) | Returns True iff the VariantCall has one or more called genotypes.
has_variation(variant_call) | Returns True if and only if the call has a non-reference genotype.
is_heterozygous(variant_call) | Returns True if and only if the call is heterozygous.
ploidy(variant_call) | Returns the ploidy of the VariantCall.
set_ad(variant_call, ad) | Sets the allele depth of the VariantCall.
set_bam_fname(variant_call, bam_fname) | Sets ‘BAM_FNAME’ field of the VariantCall.
set_format(variant_call, field_name, value, vcf_object=None) | Sets a field of the info map of the VariantCall to the given value(s).
set_gl(variant_call, gl) | Sets the genotype likelihoods of the VariantCall.
set_gq(variant_call, gq) | Sets the genotype quality of the VariantCall.
set_gt(variant_call, gt) | Sets the genotypes of the VariantCall.
set_med_dp(variant_call, med_dp) | Sets the ‘MED_DP’ field of the VariantCall.
set_min_dp(variant_call, min_dp) | Sets the ‘MIN_DP’ field of the VariantCall.



Functions

[bookmark: get_ad]


get_ad(variant_call)

Gets the allele depth of the VariantCall.





[bookmark: get_format]



get_format(variant_call, field_name, vcf_object=None)

Returns the value of the `field_name` FORMAT field.

The `vcf_object` is used to determine the type of the resulting value. If it
is a single value or a Flag, that single value will be returned. Otherwise,
the list of values is returned.

Args:
  variant_call: VariantCall proto. The VariantCall of interest.
  field_name: str. The name of the field to retrieve values from.
  vcf_object: (Optional) A VcfReader or VcfWriter object. If not None, the
    type of the field is inferred from the associated VcfReader or VcfWriter
    based on its name. Otherwise, the type is inferred if it is a reserved
    field.





[bookmark: get_gl]



get_gl(variant_call)

Returns the genotype likelihoods of the VariantCall.

Args:
  variant_call: VariantCall proto. The VariantCall for which to return GLs.

Returns:
  A list of floats representing the genotype likelihoods of this call.





[bookmark: get_gq]



get_gq(variant_call)

Gets the genotype quality of the VariantCall.





[bookmark: get_gt]



get_gt(variant_call)

Returns the genotypes of the VariantCall.

Args:
  variant_call: VariantCall proto. The VariantCall for which to return GTs.

Returns:
  A list of ints representing the genotype indices of this call.





[bookmark: get_med_dp]



get_med_dp(variant_call)

Gets the 'MED_DP' field of the VariantCall.





[bookmark: get_min_dp]



get_min_dp(variant_call)

Gets the 'MIN_DP' field of the VariantCall.





[bookmark: has_full_genotypes]



has_full_genotypes(variant_call)

Returns True iff the VariantCall has only known genotypes.

Args:
  variant_call: VariantCall proto. The VariantCall to evaluate.

Returns:
  True if all `genotype` fields are known genotypes.





[bookmark: has_genotypes]



has_genotypes(variant_call)

Returns True iff the VariantCall has one or more called genotypes.

Args:
  variant_call: VariantCall proto. The VariantCall to evaluate.

Returns:
  True if the VariantCall has one or more called genotypes, False otherwise.





[bookmark: has_variation]



has_variation(variant_call)

Returns True if and only if the call has a non-reference genotype.

Args:
  variant_call: VariantCall proto. The VariantCall to evaluate.

Returns:
  True if and only if the call has a non-reference genotype.





[bookmark: is_heterozygous]



is_heterozygous(variant_call)

Returns True if and only if the call is heterozygous.

Args:
  variant_call: VariantCall proto. The VariantCall to evaluate.

Returns:
  True if and only if the call is heterozygous.





[bookmark: ploidy]



ploidy(variant_call)

Returns the ploidy of the VariantCall.

Args:
  variant_call: VariantCall proto. The VariantCall to evaluate.

Returns:
  The ploidy of the call (a non-negative integer).





[bookmark: set_ad]



set_ad(variant_call, ad)

Sets the allele depth of the VariantCall.





[bookmark: set_bam_fname]



set_bam_fname(variant_call, bam_fname)

Sets 'BAM_FNAME' field of the VariantCall.





[bookmark: set_format]



set_format(variant_call, field_name, value, vcf_object=None)

Sets a field of the info map of the `VariantCall` to the given value(s).

`variant_call.info` is analogous to the FORMAT field of a VCF call.

Example usage:
with vcf.VcfReader('/path/to/my.vcf') as vcf_reader:
  for variant in vcf_reader:
    first_call = variant.calls[0]
    # Type can be inferred for reserved VCF fields.
    set_format(first_call, 'AD', 25)
    # Specify the reader explicitly for unknown fields.
    set_format(first_call, 'MYFIELD', 30, vcf_reader)

Args:
  variant_call: VariantCall proto. The VariantCall to modify.
  field_name: str. The name of the field to set.
  value: A single value or list of values to update the VariantCall with.
    The type of the value is determined by the `vcf_object` if one is given,
    otherwise is looked up based on the reserved FORMAT fields in the VCF
    specification.
  vcf_object: (Optional) A VcfReader or VcfWriter object. If not None, the
    type of the field is inferred from the associated VcfReader or VcfWriter
    based on its name. Otherwise, the type is inferred if it is a reserved
    field.





[bookmark: set_gl]



set_gl(variant_call, gl)

Sets the genotype likelihoods of the VariantCall.

Args:
  variant_call: VariantCall proto. The VariantCall to modify.
  gl: list(float). The list of genotype likelihoods for the VariantCall.





[bookmark: set_gq]



set_gq(variant_call, gq)

Sets the genotype quality of the VariantCall.





[bookmark: set_gt]



set_gt(variant_call, gt)

Sets the genotypes of the VariantCall.

Args:
  variant_call: VariantCall proto. The VariantCall to modify.
  gt: list(int). The list of genotypes for the VariantCall.





[bookmark: set_med_dp]



set_med_dp(variant_call, med_dp)

Sets the 'MED_DP' field of the VariantCall.





[bookmark: set_min_dp]



set_min_dp(variant_call, min_dp)

Sets the 'MIN_DP' field of the VariantCall.










          

      

      

    

  

  
    

    nucleus.util.vcf_constants – Constants related to the VCF variant specification.
    

    
 
  

    
      
          
            
  
nucleus.util.vcf_constants – Constants related to the VCF variant specification.

Source code: nucleus/util/vcf_constants.py [https://github.com/google/nucleus/tree/master/nucleus/util/vcf_constants.py]

Documentation index: doc_index.md



See the full specification at https://samtools.github.io/hts-specs/VCFv4.3.pdf
for details.


Functions overview

Name | Description
—–|————
create_get_fn(value_type, number) | Returns a callable that extracts the typed information from a ListValue.
reserved_filter_field(field_id) | Returns the reserved FILTER field with the given ID.
reserved_format_field(field_id) | Returns the reserved FORMAT field with the given ID.
reserved_format_field_get_fn(field_name) | Returns the callable that gets the proper field for the given field_name.
reserved_format_field_set_fn(field_name) | Returns the callable that sets the proper field for the given field_name.
reserved_info_field(field_id) | Returns the reserved INFO field with the given ID.
reserved_info_field_get_fn(field_name) | Returns the callable that gets the proper field for the given field_name.
reserved_info_field_set_fn(field_name) | Returns the callable that sets the proper field for the given field_name.



Functions

[bookmark: create_get_fn]


create_get_fn(value_type, number)

Returns a callable that extracts the typed information from a ListValue.

Args:
  value_type: str. The value type stored as defined in the VCF 4.3 spec.
  number: str. The number of entries of this value as defined in the VCF spec.

Returns:
  A callable that takes two inputs: A Map(str --> ListValue) and a string
  field name and returns the associated typed value(s). The return value is
  a list of typed values or a single typed value, depending on the expected
  number of values returned.





[bookmark: reserved_filter_field]



reserved_filter_field(field_id)

Returns the reserved FILTER field with the given ID.





[bookmark: reserved_format_field]



reserved_format_field(field_id)

Returns the reserved FORMAT field with the given ID.





[bookmark: reserved_format_field_get_fn]



reserved_format_field_get_fn(field_name)

Returns the callable that gets the proper field for the given field_name.

Args:
  field_name: str. The field name of the reserved FORMAT field (e.g. 'AD').

Returns:
  The callable that takes in a Map(str --> ListValue), and field name and
  returns the associated typed value(s).

Raises:
  ValueError: The field_name is not a known reserved FORMAT field.





[bookmark: reserved_format_field_set_fn]



reserved_format_field_set_fn(field_name)

Returns the callable that sets the proper field for the given field_name.

Args:
  field_name: str. The field name of the reserved FORMAT field (e.g. 'AD').

Returns:
  The callable that takes in a Map(str --> ListValue), field name, and value
  and modifies the map to populate the field_name entry with the given value.

Raises:
  ValueError: The field_name is not a known reserved FORMAT field.





[bookmark: reserved_info_field]



reserved_info_field(field_id)

Returns the reserved INFO field with the given ID.





[bookmark: reserved_info_field_get_fn]



reserved_info_field_get_fn(field_name)

Returns the callable that gets the proper field for the given field_name.

Args:
  field_name: str. The field name of the reserved INFO field (e.g. 'MQ').

Returns:
  The callable that takes in a Map(str --> ListValue), and field name and
  returns the associated typed value(s).

Raises:
  ValueError: The field_name is not a known reserved INFO field.





[bookmark: reserved_info_field_set_fn]



reserved_info_field_set_fn(field_name)

Returns the callable that sets the proper field for the given field_name.

Args:
  field_name: str. The field name of the reserved INFO field (e.g. 'MQ').

Returns:
  The callable that takes in a Map(str --> ListValue), field name, and value
  and modifies the map to populate the field_name entry with the given value.

Raises:
  ValueError: The field_name is not a known reserved INFO field.










          

      

      

    

  

  
    

    nucleus.util.vis – Utility functions for visualization and inspection of pileup examples.
    

    
 
  

    
      
          
            
  
nucleus.util.vis – Utility functions for visualization and inspection of pileup examples.

Source code: nucleus/util/vis.py [https://github.com/google/nucleus/tree/master/nucleus/util/vis.py]

Documentation index: doc_index.md



Visualization and inspection utility functions enable showing image-like array
data including those used in DeepVariant.


Classes overview

Name | Description
—–|————
BaseQuality |
Diff |
MappingQuality |
ReadSupport |
StrandBias |



Functions overview

Name | Description
—–|————
add_header(img, labels, mark_midpoints=True, header_height=20) | Adds labels to the image, evenly distributed across the top.
alt_allele_indices_from_example(example) | Extract indices of the particular alt allele(s) the example represents.
alt_bases_from_indices(alt_allele_indices, alternate_bases) | Get alt allele bases based on their indices.
alt_from_example(example) | Get alt allele(s) from a DeepVariant example.
analyze_diff_and_nearby_variants(channels) | Analyzes which differences belong to nearby variants and which do not.
array_to_png(arr, path=None, show=True, vmin=None, vmax=None, scale=None, labels=None) | Save an array as a PNG image with PIL and show it.
autoscale_colors_for_png(arr, vmin=None, vmax=None) | Adjust an array to prepare it for saving to an image.
binomial_test(k, n) | Calculates a two-tailed binomial test with p=0.5, without scipy.
channels_from_example(example) | Extract image from an Example and return the list of channels.
convert_6_channels_to_rgb(channels) | Convert 6-channel image from DeepVariant to RGB for quick visualization.
curate_pileup(channels) | Runs all automated curation functions and outputs categorical tags.
describe_diff(channels, diff_fraction_threshold=0.01) | Describes a pileup image by its diff channel, including nearby variants.
describe_read_support(channels) | Calculates read support and describes it categorically.
draw_deepvariant_pileup(example=None, channels=None, composite_type=None, annotated=True, labels=None, path=None, show=True, scale=None) | Quick utility for showing a pileup example as channels or RGB.
fraction_low_base_quality(channels, threshold=127) | Gets fraction of bases that have low base quality scores in a pileup.
fraction_read_support(channels) | Gets fraction of reads that support the variant.
fraction_reads_with_low_mapq(channels, threshold=127) | Gets fraction of reads that have low mapping quality scores in pileup.
get_image_array_from_example(example) | Decode image/encoded and image/shape of an Example into a numpy array.
label_from_example(example) | Get the “label” from an example.
locus_id_from_variant(variant) | Create a locus ID of form “chr:pos_ref” from a Variant object.
locus_id_with_alt(example) | Get complete locus ID from a DeepVariant example.
pvalue_for_strand_bias(channels) | Calculates a rough p-value for strand bias in pileup.
remove_ref_band(arr, num_top_rows_to_skip=5) | Removes the reference rows at the top of a pileup image array.
save_to_png(arr, path=None, image_mode=None, show=True, labels=None, scale=None) | Make a PNG and show it from a numpy array of dtype=np.uint8.
scale_colors_for_png(arr, vmin=0, vmax=255) | Scale an array to integers between 0 and 255 to prep it for a PNG image.
split_3d_array_into_channels(arr) | Split 3D array into a list of 2D arrays.
variant_from_example(example) | Extract Variant object from the ‘variant/encoded’ feature of an Example.



Classes


BaseQuality



Diff



MappingQuality



ReadSupport



StrandBias




Functions

[bookmark: add_header]


add_header(img, labels, mark_midpoints=True, header_height=20)

Adds labels to the image, evenly distributed across the top.

This is primarily useful for showing the names of channels.

Args:
  img: A PIL Image.
  labels: list of strs. Labels for segments to write across the top.
  mark_midpoints: bool. Whether to add a small vertical line marking the
    center of each segment of the image.
  header_height: int. Height of the header in pixels.

Returns:
  A new PIL Image, taller than the original img and annotated.





[bookmark: alt_allele_indices_from_example]



alt_allele_indices_from_example(example)

Extract indices of the particular alt allele(s) the example represents.

Args:
  example: a DeepVariant make_examples output example.

Returns:
  list of indices.





[bookmark: alt_bases_from_indices]



alt_bases_from_indices(alt_allele_indices, alternate_bases)

Get alt allele bases based on their indices.

e.g. one alt allele: [0], ["C"] => "C"
or with two alt alleles: [0,2], ["C", "TT", "A"] => "C-A"

Args:
  alt_allele_indices: list of integers. Indices of the alt alleles for a
    particular example.
  alternate_bases: list of strings. All alternate alleles for the variant.

Returns:
  str. Alt allele(s) at the indices, joined by '-' if more than 1.





[bookmark: alt_from_example]



alt_from_example(example)

Get alt allele(s) from a DeepVariant example.

Args:
  example: a DeepVariant make_examples output example.

Returns:
  str. The bases of the alt alleles, joined by a -.





[bookmark: analyze_diff_and_nearby_variants]



analyze_diff_and_nearby_variants(channels)

Analyzes which differences belong to nearby variants and which do not.

This attempts to identify putative nearby variants from the pileup image
alone, and then excludes these columns of the pileup to calculate the
remaining fraction of differences that may be attributed to sequencing errors.

Args:
    channels: A list of channels of a DeepVariant pileup image. This only uses
      channels[5], the 'differs from ref' channel.

Returns:
    Two outputs: diff fraction, number of likely nearby variants.





[bookmark: array_to_png]



array_to_png(arr, path=None, show=True, vmin=None, vmax=None, scale=None, labels=None)

Save an array as a PNG image with PIL and show it.

Args:
  arr: numpy array. Should be 2-dimensional or 3-dimensional where the third
    dimension has 3 channels.
  path: str. Path for the image output. Default is /tmp/tmp.png for quickly
    showing the image in a notebook.
  show: bool. Whether to show the image using IPython utilities, only works in
    notebooks.
  vmin: number. Minimum data value, which will correspond to black in
    greyscale or lack of each color in RGB images. Default None takes the
    minimum of the data from arr.
  vmax: number. Maximum data value, which will correspond to white in
    greyscale or full presence of each color in RGB images. Default None takes
    the max of the data from arr.
  scale: integer. Number of pixels wide and tall to show each cell in the
    array. This sizes up the image while keeping exactly the same number of
    pixels for every cell in the array, preserving resolution and preventing
    any interpolation or overlapping of pixels. Default None adapts to the
    size of the image to multiply it up until a limit of 500 pixels, a
    convenient size for use in notebooks. If saving to a file for automated
    processing, scale=1 is recommended to keep output files small and simple
    while still retaining all the information content.
  labels: list of str. Labels to show across the top of the image.

Returns:
  None. Saves an image at path and optionally shows it with IPython.display.





[bookmark: autoscale_colors_for_png]



autoscale_colors_for_png(arr, vmin=None, vmax=None)

Adjust an array to prepare it for saving to an image.

Re-scale numbers in the input array to go from 0 to 255 to adapt them for a
PNG image.

Args:
  arr: numpy array. Should be 2-dimensional or 3-dimensional where the third
    dimension has 3 channels.
  vmin: number (float or int). Minimum data value, which will correspond to
    black in greyscale or lack of each color in RGB images. Default None takes
    the minimum of the data from arr.
  vmax: number (float or int). Maximum data value, which will correspond to
    white in greyscale or full presence of each color in RGB images. Default
    None takes the max of the data from arr.

Returns:
  (modified numpy array, image_mode)





[bookmark: binomial_test]



binomial_test(k, n)

Calculates a two-tailed binomial test with p=0.5, without scipy.

Since the expected probability is 0.5, it simplifies a few things:
1) (0.5**x)*(0.5**(n-x)) = (0.5**n)
2) A two-tailed test is simply doubling when p = 0.5.
Scipy is much larger than Nucleus, so this avoids adding it as a dependency.

Args:
  k: Number of "successes", in this case, the number of supporting reads.
  n: Number of "trials", in this case, the total number of reads.

Returns:
  The p-value for the binomial test.





[bookmark: channels_from_example]



channels_from_example(example)

Extract image from an Example and return the list of channels.

Args:
  example: a tensorflow Example containing features that include
    "image/encoded" and "image/shape"

Returns:
  list of 2D numpy arrays, one for each channel.





[bookmark: convert_6_channels_to_rgb]



convert_6_channels_to_rgb(channels)

Convert 6-channel image from DeepVariant to RGB for quick visualization.

The 6 channels are: "read base", "base quality", "mapping quality", "strand",
"supports variant", "base != reference".

Args:
  channels: a list of 6 numpy arrays.

Returns:
  3D numpy array of 3 colors (Red, green, blue).





[bookmark: curate_pileup]



curate_pileup(channels)

Runs all automated curation functions and outputs categorical tags.

The following values are possible for each descriptor:
* base_quality: GOOD (>5% low quality) or BAD.
* mapping_quality: GOOD (<5% low quality) or BAD.
* strand_biased: BIASED (p-value < 0.05) or GOOD.
* diff_category: MANY_DIFFS (>1% differences), NEARBY_VARIANTS (5+ variants),
or FEW_DIFFS otherwise.
* read_support: LOW (<=30%), HALF (30-80%), ALL (>80%).

The thresholds were all set by trying to match human curation.

Args:
    channels: A list of DeepVariant channels.

Returns:
    A PileupCuration NamedTuple.





[bookmark: describe_diff]



describe_diff(channels, diff_fraction_threshold=0.01)

Describes a pileup image by its diff channel, including nearby variants.

Returns Diff.MANY_DIFFS if the fraction of differences outside potential
nearby variants is above the diff_fraction_threshold, which is usually
indicative of sequencing errors. Otherwise return Diff.NEARBY_VARIANTS if
there are five or more of these, or Diff.FEW_DIFFS if neither of these
special cases apply.

Args:
    channels: A list of channels of a DeepVariant pileup image. This only uses
      channels[5], the 'differs from ref' channel.
    diff_fraction_threshold: Fraction of total bases of all reads that can
      differ, above which the pileup will be designated as 'many_diffs'.
      Differences that appear due to nearby variants (neater columns) do not
      count towards this threshold. The default is set by visual curation of
      Illumina reads, so it may be necessary to increase this for higher-error
      sequencing types.

Returns:
    One Diff value.





[bookmark: describe_read_support]



describe_read_support(channels)

Calculates read support and describes it categorically.

Computes read support as a fraction and returns a convenient descriptive term
according to the following thresholds: LOW is [0, 0.3], HALF is (0.3, 0.8],
and ALL is (0.8, 1].

Args:
    channels: A list of channels of a DeepVariant pileup image. This only uses
      channels[4], the 'read supports variant' channel.

Returns:
    A ReadSupport value.





[bookmark: draw_deepvariant_pileup]



draw_deepvariant_pileup(example=None, channels=None, composite_type=None, annotated=True, labels=None, path=None, show=True, scale=None)

Quick utility for showing a pileup example as channels or RGB.

Args:
  example: A tensorflow Example containing image/encoded and image/shape
    features. Will be parsed through channels_from_example. Ignored if
    channels are provided directly. Either example OR channels is required.
  channels: list of 2D arrays containing the data to draw. Either example OR
    channels is required.
  composite_type: str or None. Method for combining channels. One of
    [None,"RGB"].
  annotated: bool. Whether to add channel labels and mark midpoints.
  labels: list of str. Which labels to add to the image. If annotated=True,
    use default channels labels for DeepVariant.
  path: str. Output file path for saving as an image. If None, just show plot.
  show: bool. Whether to display the image for ipython notebooks. Set to False
    to prevent extra output when running in bulk.
  scale: integer. Multiplier to enlarge the image. Default: None, which will
    set it automatically for a human-readable size. Set to 1 for no scaling.

Returns:
  None. Saves an image at path and optionally shows it with IPython.display.





[bookmark: fraction_low_base_quality]



fraction_low_base_quality(channels, threshold=127)

Gets fraction of bases that have low base quality scores in a pileup.

Args:
    channels: A list of channels of a DeepVariant pileup image. This only uses
      channels[1], the base quality channel.
    threshold: Bases qualities below this will be considered low quality. The
      default is 127 because this is half of the max (254).

Returns:
    The fraction of bases with base quality below the threshold.





[bookmark: fraction_read_support]



fraction_read_support(channels)

Gets fraction of reads that support the variant.

Args:
    channels: A list of channels of a DeepVariant pileup image. This only uses
      channels[4], the 'read supports variant' channel.

Returns:
    Fraction of reads supporting the alternate allele(s), ranging from [0, 1].





[bookmark: fraction_reads_with_low_mapq]



fraction_reads_with_low_mapq(channels, threshold=127)

Gets fraction of reads that have low mapping quality scores in pileup.

Args:
    channels: A list of channels of a DeepVariant pileup image. This only uses
      channels[2], the mapping quality channel.
    threshold: int. Default is 127 because this is half of the max (254).

Returns:
    The fraction of bases with mapping quality below the threshold.





[bookmark: get_image_array_from_exam